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Abstract

We prove small data energy estimates of all orders of differentiability between past null infinity
and future null infinity of de Sitter space for the conformally invariant Maxwell-scalar field system.
This allows us to construct bounded and invertible, but nonlinear, scattering operators taking past
asymptotic data to future asymptotic data. We also deduce exponential decay rates for solutions
with data having at least two derivatives, and for more regular solutions discover an asymptotic
decoupling of the scalar field from the charge. The construction involves a carefully chosen complete
gauge fixing condition which allows us to control all components of the Maxwell potential, and a
nonlinear Grönwall inequality for higher order estimates.

Studies of scattering go back to the beginnings of physics. Perhaps the most famous modern mathe-
matical treatment was developed in the 1960s by Lax and Phillips [33,34], who used spectral techniques
to study the scattering of a wave by an obstacle in flat space. In general relativity it is of interest to
study metric scattering, that is the effects of curved space on the asymptotic behaviour of fields. Around
the same time as Lax and Phillips were developing their framework, Roger Penrose discovered a way to
compactify certain spacetimes by conformally rescaling the metric and attaching a boundary, I [43,44].
He called the class of spacetimes admitting such a compactification asymptotically simple and the bound-
ary so attached null infinity, for this was where all null geodesics ended up ‘at infinity’. This led to a
brand new way of viewing the asymptotics of massless fields in general relativity: one works in Penrose’s
conformally compactified spacetime and studies the regularity of fields on I , and then translates the
regularity in the conformally rescaled spacetime to fall-off conditions in the physical spacetime.

It was not until the work of Friedlander [19, 20] in 1980, however, that it was understood that the
approaches of Lax and Phillips on the one hand and Penrose on the other could be combined into
a robust geometric formulation of scattering theory. Friedlander showed that, although one cannot
perform the same analytically explicit constructions in curved space, one can make sense of the Lax–
Phillips asymptotic profiles of fields by identifying them with suitably rescaled limits of fields going to
infinity along null directions. These became known as Friedlander’s radiation fields. The ideas of such
conformal scattering were taken up by Baez, Segal and Zhou [6–9] to study a nonlinear wave equation
and to some extent Yang–Mills equations on flat space, and later by Mason and Nicolas [35, 36] to
study linear equations on a large class of asymptotically simple spacetimes constructed by Corvino,
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Schoen, Chruściel, Delay, Klainerman, Nicolò, Friedrich and others [12, 13, 15, 16, 30, 31]. This spurred a
programme of constructing conformal scattering theories for various fields on a variety of backgrounds
and since then a number of works have appeared, many focussing on conformal scattering on black hole
spacetimes1 [23, 26, 39, 41, 42]. It should be mentioned that there have been plenty of works studying
relativistic scattering theory without employing the conformal method, notably by Dimock and Kay in
the 1980s [17, 18] and later by Bachelot [3, 4] and collaborators Nicolas, Häfner, Daudé, and Melnyk,
among many others, a programme which eventually led to rigorous proofs of the Hawking effect [5, 37].

The above programmes were concerned mainly with asymptotically flat spacetimes. However, as-
tronomical observations have by now shown that the cosmological constant Λ in our universe, though
tiny, is positive [46, 47, 49, 52]. It is thus of interest to study scattering, especially of nonlinear fields,
on de Sitter space. De Sitter space is the Lorentzian analogue of the sphere in Euclidean geometry and
one of the three maximally symmetric solutions to the vacuum Einstein equations as classified by the
sign of the cosmological constant, with flat Euclidean space corresponding to Minkowski space (Λ = 0)
and hyperbolic space corresponding to anti-de Sitter space (Λ < 0). As such, de Sitter space differs
from Minkowski space in several crucial aspects. Firstly, it is not asymptotically flat. Nonetheless, it is
asymptotically simple in the sense of Penrose [44] and so admits a conformal compactification. Secondly,
the positive cosmological constant, no matter how small, renders null infinity spacelike in de Sitter space,
which has implications for conformal scattering. In the asymptotically flat case the constructions of
Mason and Nicolas required the resolution of a global linear Goursat problem, which had been shown
by Hörmander [25] to be solvable in some generality. In de Sitter space, however, a spacelike I means
that the construction of a scattering theory instead requires the resolution of a regular Cauchy problem.
Thirdly, while obtaining flat space scattering and peeling results through conformal techniques is fine for
linear fields, nonlinear fields generically possess so-called charges at spacelike infinity [1,14,48]. This is a
major obstruction to constructing conformal scattering theories for nonlinear fields in asymptotically flat
spacetimes and is related to infrared divergences in quantum field theory [32,40]. The problem is entirely
absent in de Sitter space as it is spatially compact.

From an analytic point of view, it has been known since the work of Friedrich [21, 22] that de Sitter
space is a stable solution of Einstein’s equations with a positive cosmological constant. Moreover, a
recent and much celebrated result of Hintz and Vasy has shown that Kerr-de Sitter black holes are
stable [24]. One therefore expects scattering results on de Sitter space to fit into a larger host of stories
on asymptotically de Sitter spacetimes. Other results in this vein have been obtained by, for example,
Vasy, Melrose and Sá Barreto, [38,56]. From a more physical perspective, de Sitter space has the peculiar
feature that no single observer can ever observe the entire spacetime, in contrast to the Minkowski
case where an observer’s past lightcone eventually contains the whole history of the universe. This is
related to the existence of cosmological horizons, null hypersurfaces criss-crossing the Penrose diagram
of de Sitter space. Their existence has implications for the definition of a classical scattering matrix: the
construction of one requires a timelike Killing or conformally Killing vector field, and here one has a choice
in de Sitter space. One might wish to use the Killing field provided by the standard static coordinates,
i.e. the coordinates an observer at the south pole in de Sitter space might use for themselves, but this
is problematic as it fails to be timelike and future pointing beyond the cosmological horizons. Another
approach is to conformally compactify de Sitter space and embed it in the Einstein cylinder, where
one has a natural globally timelike Killing field which becomes conformally Killing in physical de Sitter
space. This can then be used to define an observer-oblivious classical scattering matrix in de Sitter space.
We adopt the latter approach here. The importance of the construction of such scattering matrices for
quantum gravity in de Sitter is explained well in [53] and the references therein.

This paper is organized as follows. In Section 2 we state the conventions and notation used in the
paper, and in Section 3 we introduce the conformally invariant Maxwell-scalar field system that we
subsequently study. In Section 4 we describe de Sitter space dS4, a number of standard coordinate

1See also [27,55] for some results in interiors of black holes.
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systems on dS4, its conformal compactification, and our choice of energy-momentum tensor for the
Maxwell-scalar field system on the conformally rescaled spacetime. In Section 5 we state the main results
in detail. Sections 6 and 7 contain a detailed derivation of the required gauge fixing conditions, the
formulation of the Cauchy problem for our system, and an existence theorem. Sections 8 to 10 contain
the inductive energy estimates on which our results rest. Sections 11 to 13 finish off the proofs of the
main results.

1 Results

We prove small data energy estimates of all orders of differentiability m between I − and I + of de
Sitter space for the conformally invariant Maxwell-scalar field system and show the existence of small
data scattering operators Sm for all m > 2. These estimates rely crucially on the subcritical nature
of the nonlinearity of the Maxwell-scalar field system in four dimensions. We find that, using a careful
choice of gauge, it is possible to control all components of the Maxwell potential and the scalar field, and
close the estimates using a nonlinear Grönwall inequality. We may initially state the main theorem as
follows. The full statements of the main theorems can be found in Section 5.

Consider the Penrose diagram of de Sitter space and an initial surface Σ ' S3, as depicted in Figure 1.

North Pole South Pole

I +

I −

Σ

Figure 1: The Penrose diagram for dS4. The wavy red lines represent the forward and backward wave
operators W ±

m .

Theorem 1.1. For any m ∈ N, the Hm ⊕ Hm−1 norm on null infinity of the rescaled solution of the
Maxwell-scalar field system is equivalent to the Hm⊕Hm−1 norm of the initial data, provided the initial
data is sufficiently small.

Using these estimates, we construct bounded and invertible, but nonlinear, wave and scattering op-
erators.

Theorem 1.2. For any m > 2 there exist bounded and invertible, but nonlinear, forward and backward
wave operators T±m mapping small Hm ⊕ Hm−1 Maxwell-scalar field data on Σ to small Hm ⊕ Hm−1

Maxwell-scalar field data on I ±, and a bounded invertible scattering operator

Sm = T+
m ◦ (T−m)−1

mapping small Hm ⊕Hm−1 Maxwell-scalar field data on I − to small Hm ⊕Hm−1 Maxwell-scalar field
data on I +.
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As a corollary, our estimates also imply exponential decay rates for the Maxwell-scalar field system
on de Sitter space with small H2⊕H1 initial data. The decay rates are a partial extension of the results
of Melrose, Sá Barreto and Vasy [38].

Corollary 1.3. The scalar field and the components of the Maxwell potential decay exponentially in
proper time along timelike geodesics approaching I .

In addition to their interpretation in terms of peeling and conformal scattering, our results may also be
seen as a fixed background stability result in the spirit of Friedrich, Svedberg and Ringström [21,22,50,54].
It is worth mentioning that the estimates we prove here are explicit, allowing us to define the sets of
scattering data and read off precise decay rates.

Since the nonlinearities are of the same order, in principle there is no obstruction to extending our
estimates to the Yang–Mills–Higgs system on de Sitter space. As a result, the same scattering and decay
results should apply there.

2 Conventions

We use the spacetime signature (+,−,−,−). Our main estimates will be performed on the Einstein
cylinder E = R× S3 with metric e = gR ⊕ (−s3), where s3 = gS3 is the standard positive-definite metric
on S3. We will use Penrose’s abstract index notation and use the Roman indices a, b, . . . to refer to tensors
on E and contractions with respect to the full spacetime metric e (or sometimes a general spacetime M

with metric g), and use the Greek indices µ, ν, . . . to refer to tensors on S3 and contractions with respect
to the metric s3. At a certain point we will also use the indices i, j and k to refer to a basis of vector fields
on S3, but this will be made explicit at the time. We will use ∇ to denote the Levi–Civita connection
of the full spacetime metric e (or a general metric g), and /∇ to denote the Levi–Civita connection of s3.
Thus, as e = gR ⊕ (−s3) = 1 ⊕ (−s3), we shall have ∇ = ∇R ⊕∇s3 = ∂ ⊕ /∇. We will use dv to denote
the volume form of the full spacetime metric (e or g), and dvs3 to denote the volume form of s3. In the
case of (E, e) we will thus have dv = dτ ∧dvs3 , τ being the coordinate on R. For a 1-form A on E we will
use A to denote the projection of A onto S3, A0 to denote the component of A along ∂τ , and dot (as in
Ȧ) to denote differentiation with respect to τ . The Lebesgue and Sobolev norms Lp and Hm of a scalar
or vector will refer to Lp(S3) and Hm(S3), unless specifically stated otherwise. Occasionally we shall use
the symbol =

∧
to denote equality on null infinity I (see Section 4).

We will also adopt Penrose’s sign convention for the curvature tensors, meaning that the Riemann
curvature tensor Rcdab will satisfy

[∇a,∇b]Xc = −RcdabXd.

The Ricci tensor and the scalar curvature will then be defined as usual,

Rab ..= Rcacb, R ..= R a
a ,

so that in these conventions the scalar curvature of, for example, a 3-sphere with the positive-definite
metric s3 will be negative, −6 to be exact. However, since our metrics will be of signature (+,−,−,−),
that will mean that a spacelike 3-sphere in our construction will have positive scalar curvature equal to
6.

3 The Conformally Invariant Maxwell-Scalar Field System

Let (M, g) be a 4-dimensional Lorentzian manifold and consider the Lagrangian density

L = −1

4
FabF

ab +
1

2
DaφDaφ− 1

12
R|φ|2, (3.1)
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where Fab = 2∇[aAb] is a real 2-form called the Maxwell field, Aa is a real 1-form called the Maxwell
potential, φ is a complex scalar field on M, R is the scalar curvature of gab, and Daφ = ∇aφ + iAaφ,
where ∇a is the Levi–Civita connection of gab. The differential operator Da is called the gauge covariant
derivative. The Euler–Lagrange equations associated to (3.1) are

∇bFab = Im
(
φ̄Daφ

)
and DaDaφ+

1

6
Rφ = 0. (3.2)

The Maxwell-scalar field system (3.1) is the simplest classical field theory exhibiting a non-trivial gauge
dependence. Indeed, the 1-form Aa is not uniquely determined by the 2-form Fab, and any transformation
of the form

Aa 7−→ Aa +∇aχ
leaves Fab unchanged. This transforms

Daφ = ∇aφ+ iAaφ 7−→ ∇aφ+ i(Aa +∇aχ)φ = e−iχDa(eiχφ),

so that if one makes the corresponding transformation

φ 7−→ e−iχφ,

the Lagrangian (3.1), and thus also the field equations (3.2), remain unchanged.

Remark 3.1. The gauge covariant derivative Da acting on φ is a connection on a principal bundle P over
M with fibre U(1). This connection is represented by the real 1-form Aa on M in any trivialisation of P ,
where the factor of i in Da comes from u(1) = iR. The scalar field φ is a section of a complex line bundle
over M associated to P by the representation eiχ of U(1).

Consider a conformal rescaling of (M, g),

ĝab = Ω2gab. (3.3)

It turns out that in many cases it is possible to fully or partially compactify M by choosing the conformal
factor Ω so that it compensates for the divergence of distances with respect to the physical metric g
and attach the boundary I ..= {Ω = 0} to M; this is Roger Penrose’s notion of asymptotically simple
spacetimes first described around 1963 in [43] and [44]. For our purposes it will be sufficient to assume
that the spacetime M is regular enough so that it may be compactified in this way to make a smooth

compact manifold with boundary, M̂ ..= M ∪ I , although weaker, partial compactifications leaving
singularities at a finite number of points in the boundary are widely used to study, for example, black

hole spacetimes [26, 35, 36, 39, 41, 42]. We equip M̂ with the rescaled (also called unphysical) metric ĝab
and call the spacetime (M̂, ĝ) the rescaled spacetime.

It is possible to transport the fields (Aa, φ) into the rescaled spacetime M̂ by weighting them ap-

propriately by the conformal factor Ω so that the field equations (3.2) are preserved in M̂. The correct
choice of conformal weights for (Aa, φ) are (0,−1),

Âa ..= Aa, φ̂ ..= Ω−1φ,

and we show below that this implies the conformal invariance of the Maxwell-scalar field system (3.2).
Under the rescaling (3.3) the Christoffel symbols Γabc of gab transform as

Γ̂abc = Γabc + Υcδ
a
b + Υbδ

a
c −Υdg

adgbc,

where Υa
..= Ω−1∂aΩ = ∂a log Ω, and using this one calculates that

−1

4
FabF

ab = −1

4
Ω4F̂abF̂

ab
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and
1

2
DaφDaφ =

1

2
Ω4D̂aφ̂D̂aφ̂+

1

2
Ω4
(

2Υa Re(φ̂D̂aφ̂) + ĝabΥaΥb|φ̂|2
)
.

Moreover, because in 4 dimensions the scalar curvature R transforms as (see [45], eq. (6.8.25))

1

12
R = Ω2

(
1

12
R̂− 1

2
∇̂aΥa +

1

2
ĝabΥaΥb

)
,

one has

− 1

12
R|φ|2 = − 1

12
Ω4R̂|φ̂|2 +

1

2
Ω4
(
∇̂aΥa − ĝabΥaΥb

)
|φ̂|2.

Adding these together one sees that the Lagrangian transforms as

L = Ω4L̂+
1

2
Ω4
(

2Υa Re(φ̂D̂aφ̂) + (∇̂aΥa)|φ̂|2
)

= Ω4L̂+
1

2
Ω4
(

Υa∇̂a(|φ̂|2) + (∇̂aΥa)|φ̂|2
)

= Ω4L̂+
1

2
Ω4∇̂a(|φ̂|2Υa).

Now the volume form d̂v of M̂ is related to the volume form dv of M by dv = Ω−4d̂v, so the action

S =

∫
M

L dv

transforms as

S = Ŝ +
1

2

∫
M̂

∇̂a(|φ̂|2Υa) d̂v = Ŝ +
1

2

∫
I

|φ̂|2Υaĝ
ab∂b ⌟ d̂v. (3.4)

In other words, S is conformally invariant up to a boundary term. Since the Euler-Lagrange equations
arise from a local variation of the action, this implies the conformal invariance of the field equations (3.2).

4 De Sitter Space

4.1 Global Coordinates and Conformal Compactification

The (3 + 1)-dimensional de Sitter space dS4 is defined to be the hyperboloid

|x|2 − x2
0 =

1

H2

in (4 + 1)-dimensional Minkowski space

m = dx2
0 − d|x|2 − |x|2s3,

where |x| =
√
x2

1 + x2
2 + x2

3 + x2
4 and s3 is the standard metric on the 3-sphere {|x| = 1}. If we set

x0 =
1

H
sinh (Hη) , |x| = 1

H
cosh (Hη) ,

so that η is a coordinate on dS4, the metric m descends to the metric ds2 on dS4,

ds2 = dη2 − 1

H2
cosh2 (Hη) s3. (4.1)
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This provides a global coordinate system on dS4 and is known as the closed slicing of de Sitter space.
Note that the R× S3 topology is manifest in these coordinates. The metric (4.1) can be visualized as a
compact spacelike slice expanding in time η, as depicted in fig. 2.

η

Figure 2: The closed slicing of dS4.

To conformally compactify dS4, however, we need a further change of coordinates

tan
(τ

2

)
= tanh

(
Hη

2

)
.

In terms of τ the metric becomes

ds2 =
1

H2 cos2 τ

(
dτ2 − s3

)
, (4.2)

where −π/2 < τ < π/2. This makes it obvious as to what should be taken as the conformal factor Ω to
compactify dS4, namely

Ω = H cos τ,

and we define
dŝ2 ..= Ω2ds2 = dτ2 − s3 =.. e. (4.3)

In this conformal scale the hypersurfaces {τ = ±π/2} are regular, in contrast to the physical metric
(4.2). In fact, the metric e clearly extends smoothly for all τ ∈ R, so one may consider the extended
spacetime (E, e) ..= (R × S3, e) known as the Einstein cylinder. We thus identify compactified de Sitter

space d̂S4 with the subset [−π/2, π/2]×S3 of the Einstein cylinder E by attaching to (4.2) the boundary
I ..= {Ω = 0} = {|τ | = π/2}. This boundary is the union of two disjoint smooth surfaces

I + =
{
τ =

π

2

}
and I − =

{
τ = −π

2

}
,

which we call future null infinity and past null infinity respectively. Note that I ± are spacelike hyper-
surfaces of E; the name null infinity derives from the fact that I ± is where all future (past) pointing
null geodesics in de Sitter space end up at infinity. Note also that the vector field T ..= ∂/∂τ is a timelike
Killing field in E, and in particular it is automatically uniformly timelike since E is spatially compact.
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τ

I +

I −

Figure 3: Compactified de Sitter space d̂S4 in the Einstein cylinder E.

As a result, T provides a uniformly spacelike foliation of E by the level surfaces of the coordinate τ given
explicitly by F = {S3

τ
..= S3 × {τ} : τ ∈ R}. Our energies will be defined with respect to F .

Remark 4.1. The fact that I is spacelike is, of course, a consequence of the fact that dS4 is a solution
to Einstein’s equations with a positive cosmological constant λ,

Rab = λgab.

Indeed, in general the norm squared on I of the normal to I is

(∇aΩ)(∇aΩ) =
∧ 1

3
λ.

In the case of dS4, λ = 3H2 so that (∇Ω)2 =
∧
H2 > 0. Note that H corresponds to the Hubble constant

in vacuum.

Writing the 3-sphere metric as s3 = dζ2 + (sin2 ζ)s2 for ζ ∈ [0, π] and quotienting by the SO(3)
symmetry group of s2 we obtain the Penrose diagram for dS4,

North Pole South Pole

I +

I −

I

II

III

IV

Figure 4: The Penrose diagram for dS4.

The coordinate ζ varies from 0 to π going from left to right, with the vertical lines {ζ = 0} and {ζ = π}
representing the North Pole and the South Pole respectively. The coordinate τ varies from −π/2 to π/2
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going up, with the horizontal lines {τ = −π/2} and {τ = π/2} representing past and future null infinities
I ±, as remarked earlier. The dashed lines are the past and future horizons for an observer at the South
Pole: a classical observer sitting at {ζ = π} can never observe the region II ∪ III, and can never send a
signal to the region III ∪ IV. Thus region I is the region of communications for an observer at the South
Pole, while region III is completely inaccessible.

4.2 Static Coordinates

A set of physical space coordinates on dS4 that exhibit an explicit future-pointing timelike Killing field
in the region I may be constructed by defining

r =
sin ζ

H cos τ
, tanh(Ht) =

sin τ

cos ζ

for τ ∈ (−π/2, π/2) and ζ ∈ (0, π). Then the unrescaled dS4 metric takes the form

ds2 = F (r)dt2 − F (r)−1dr2 − r2s2, (4.4)

where F (r) = (1−H2r2). In these coordinates the cosmological horizons represented by the dashed lines
in fig. 4 are given by {r = 1/H}, I ± are given by {r =∞}, the North and South Poles are at {r = 0},
and the four corners of the Penrose diagram are at {t = ±∞}. The vector field ∂/∂t is manifestly a
timelike Killing vector in the region {r < 1/H}, but becomes null on the cosmological horizon {r = 1/H}.
It is future-pointing in the region I, past-pointing in the region III, and spacelike in the regions II and
IV. The arrows in fig. 5 represent the directions of the flow of ∂/∂t.

r = 0 r = 0

r =∞

r =∞ t = −∞t = +∞

t = +∞t = −∞

Figure 5: Static coordinates on dS4.

4.3 Choice of Energy-Momentum Tensor on E

From now on we denote by φ and Aa the scalar field and Maxwell potential on the Einstein cylinder E,
and by φ̃ and Ãa the conformally related physical fields on de Sitter space dS4,

φ = Ω−1φ̃, Aa = Ãa, (4.5)

where Ω = H cos τ .
We define the energy-momentum tensor for the system (3.2) on E to be

Tab[φ,A] ..= −FacF c
b +

1

4
eabFcdF

cd + D(aφDb)φ−
1

2
eabDcφDcφ+

1

2
eab|φ|2

..= Tab[A] + Tab[φ].
(4.6)

9



One can check by direct calculation that, as a consequence of the field equations (3.2), Tab is conserved,

∇aTab = 0,

so Tab is suitable for defining a conserved energy for the system (3.2),

Eτ [φ,A] ..=

∫
S3τ

T00[φ,A] dvs3 =

∫
S3τ

Tab[φ,A]T aT b dvs3 . (4.7)

Since T a is Killing on E, this clearly satisfies

d

dτ
Eτ [φ,A] = 0

if the field equations (3.2) are satisfied. We call (4.7) the geometric energy for the system (3.2). We also
define the geometric energies for the individual sectors of the scalar field φ and the Maxwell potential
Aa,

Eτ [φ] ..=

∫
S3τ

T00[φ] dvs3 , Eτ [A] ..=

∫
S3τ

T00[A] dvs3 .

The sectorial geometric energies Eτ [φ] and Eτ [A] are not conserved individually and can exchange energy
throughout the evolution, but of course the total geometric energy Eτ [φ,A] = Eτ [φ] +Eτ [A] is. For m > 1
we also define the Sobolev-type approximate energies

Sm[φ] ..= ‖φ̇‖2Hm−1 + ‖φ‖2Hm , Sm[A] ..= Sm[A] + Sm[A0],

Sm[A] ..= ‖Ȧ‖2Hm−1 + ‖A‖2Hm , Sm[φ,A] ..= Sm[φ] + Sm[A],

Sm[A0] ..= ‖A0‖2Hm , Sm[φ,A] ..= Sm[φ,A] + Sm[A0],

where H0 = L2. Furthermore, for brevity we will often simply write Sm to mean Sm[φ,A].

4.4 Scaling of Initial Energies

We will consider initial data on the hypersurface {τ = 0} = {η = 0} and use the coordinate τ and the
metric e on the rescaled spacetime, and the coordinate η and the metric (4.1) on the physical spacetime.
By differentiating the relationship tan(τ/2) = tanh(Hη/2) we find

dτ =
H

cosh(Hη)
dη,

so raising indices with e−1 = Ω−2g−1, where g is the metric (4.1), we find that ∂τ and ∂η are related by

∂τ =
cosh(Hη)

H
∂η.

Furthermore, the conformal factor Ω in the global coordinates (4.1) is given by

Ω = H cos τ =
H

cosh(Hη)
.

Consider the rescaled energies

Sm[φ,A](τ) = ‖φ̇‖2Hm−1(τ) + ‖φ‖2Hm(τ) + ‖Ȧ‖2Hm−1(τ) + ‖A‖2Hm(τ) + ‖A0‖2Hm(τ).
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On the initial surface {τ = 0} = {η = 0} the conformal factor is a constant and has vanishing derivative,
∂τΩ|τ=0 = 0, so the rescaled scalar field φ is related to the physical scalar field φ̃ by

φ|τ=0 = (Ω−1φ̃)|τ=0 =
1

H
φ̃|η=0,

while their time derivatives are related by

φ̇|τ=0 = (Ω−1∂τ φ̃− (∂τΩ)Ω−2φ̃)|τ=0 =
1

H2
∂ηφ̃|η=0.

Since the conformal factor is independent of the S3 coordinates, /∇Ω = 0, and the metric induced on
{η = 0} by (4.1) is equivalent to s3, the rescaled and physical norms of the scalar field are equivalent,

‖φ̇‖2Hm−1(τ = 0) + ‖φ‖2Hm(τ = 0) ' ‖∂ηφ̃‖2Hm−1(η = 0) + ‖φ̃‖2Hm(η = 0),

where there is equality if H = 1. One similarly checks that

‖Ȧ‖2Hm−1(τ = 0) + ‖A‖2Hm(τ = 0) ' ‖∂ηÃ‖2Hm−1(η = 0) + ‖Ã‖2Hm(η = 0)

and
‖A0‖2Hm(τ = 0) ' ‖Ãη‖2Hm(η = 0),

where A0dτ + Aµdxµ = A = Ã = Ãηdη + Ãµdxµ, and xµ are coordinates on S3. Thus

Sm[φ,A](τ = 0) ' Sm[φ̃, Ã](η = 0), (4.8)

and also Sm[A0](τ = 0) ' Sm[Ãη](η = 0).

5 Main Theorems

Definition 5.1. Let Σ̃ be a Cauchy surface in dS4 and consider data for the Maxwell-scalar field system

on Σ the corresponding Cauchy surface in d̂S4. We say the data

(φ0,A0, φ1,A1, a0) = (φ,A, φ̇, Ȧ, A0)|Σ

is admissible if it satisfies the strong Coulomb gauge2 and a0 solves the elliptic equation

− /∆a0 + |φ0|2a0 = − Im(φ̄0φ1)

on Σ.

Theorem 5.2 (Energy Estimates). Let m ∈ N. For suffieciently Sm[φ,A]-small admissible data on Σ

for the Maxwell-scalar field system on d̂S4 ' S3 × [−π/2, π/2] in strong Coulomb gauge one has

Sm[φ,A](0) ' Sm[φ,A](τ)

for all τ ∈ [−π/2, π/2]. In particular,

Sm[φ,A](I −) ' Sm[φ,A](I +),

where I ± = {τ = ±π/2} is the future (past) null infinity of de Sitter space dS4.

2See Section 6.1.
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Theorem 5.3 (Scattering for Small Data). For m > 2 let S0
m be the subset of Hm(Σ)2 ×Hm−1(Σ)2 ×

Hm(Σ) of distributions u0 of admissible data on Σ and let S±m be the subset of Hm(I ±)2×Hm−1(I ±)2×
Hm(I ±) of distributions u± of admissible data on I ± of de Sitter space, all equipped with the natural
norm

√
Sm. Denote by Bε the open ball of radius ε in (Hm)2×(Hm−1)2×Hm, and write S0

m,ε = S0
m∩Bε

and S±m,ε = S±m ∩ Bε. Then for every m > 2 there exist ε0, ε1 > 0, 0 < δ � 1 and sets D±m,ε1 with

S±m,δ ⊂ D±m,ε1 ⊂ S±m,ε1 such that

(i) there exist bounded invertible nonlinear operators T±m, called the forward and backward wave opera-
tors

T±m : S0
m,ε0 −→ D±m,ε1 ⊂ S±m,ε1 ,

such that u± = T±m(u0) is the forward (backward) Maxwell-scalar field development of u0 on d̂S4

restricted to I ±, and

(ii) there exists a bounded invertible nonlinear scattering operator

Sm : D−m,ε1 −→ D+
m,ε1

given by
Sm = T+

m ◦ (T−m)−1

such that u+ = Sm(u−) is the Maxwell-scalar field development of u− on d̂S4 restricted to I +.

Theorem 5.4 (Small Data Decay Rates). Let φ̃ = Ωφ and Ãa = Aa be the physical fields related to
the conformally rescaled fields φ and Aa by eq. (4.5). Suppose S2[φ̃, Ã] is small initially. Then the
Maxwell-scalar field development (φ̃, Ã) of this initial data satisfies the estimates

|φ̃| . e−H|η|, |Ãη| . e−H|η|, |Ã|s3 . 1

as |η| → ∞. Furthermore, in the static coordinates eq. (4.4)

|φ̃| .r e−H|t|, |Ãt| .r e−H|t|, |Ãr| .r e−H|t|,
1

r
|Ã|s2 .r e−H|t|

as |t| → ∞ and r is fixed. Moreover, if S3[φ̃, Ã] is small initially then there exists a constant c such that

φ̃ ∼ cΦ̃1 +O
(
e−2Ht

)
as t → +∞, where Φ̃1 = F (r)−1/2e−Ht is the e−Ht eigenmode of the linear uncharged conformally
invariant wave operator on dS4.

6 Field Equations and Gauge Fixing

The field equations (3.2) can be written out in terms of the Maxwell potential Aa,

�Aa −∇a(∇bAb) +RabA
b = − Im

(
φ̄Daφ

)
,

�φ+ 2iAa∇aφ+

(
1

6
R−AaAa + i∇aAa

)
φ = 0.

(6.1)

We shall be commuting differential operators into these equations, so it will be convenient to introduce
the operators representing their left-hand sides. For any 1-form ω and any scalar field ψ we set

M(ω)a ..= �ωa −∇a(∇bωb) +Rabω
b and S(ψ) ..= DaDaψ +

1

6
Rψ.
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The system (6.1) is then equivalent to

M(A)a = − Im
(
φ̄Daφ

)
and S(φ) = 0. (6.2)

In the following sections we specialise to the case of the Einstein cylinder (E, e). As noted earlier, for ease
of notation we will not hat any rescaled quantities on E and instead denote the corresponding physical
quantities on dS4 with a tilde, as in φ̃ or Ãa. For the metric e we compute

R = 6 and Rabdx
adxb = −2s3.

6.1 Strong Coulomb Gauge

We will work in the Coulomb gauge adapted to the foliation F ,

/∇ ·A = 0, (6.3)

but will also need to use the residual gauge freedom to fix the gauge fully. More precisely, given a
solution (A, φ) to the Maxwell-scalar field system (6.1), a general gauge transformation sends φ 7→ e−iχφ
and Aa 7→ Aa +∇aχ, and eq. (6.3) is imposed by solving the elliptic equation

/∆χ = − /∇ ·A

on S3
τ for every fixed τ . This does not determine χ uniquely: there is still the residual gauge freedom of

χ 7→ χ+ χres., where χres. solves
/∆χres. = 0

on each S3
τ . Because S3 is compact, the kernel of the Laplacian /∆ is just the vector space of constant

functions, i.e. those χres. which satisfy /∇χres. = 0, but the τ dependence in the χres. is still arbitrary.
Thus in the Coulomb gauge we have the residual gauge freedom

φ 7−→ e−iχres.(τ)φ, A0 7−→ A0 + χ̇res.(τ), A 7−→ A,

which allows one to choose

χ̇res.(τ) = − 1

|S3|

∫
S3
A0(τ) dvs3 =.. −Ā0(τ)

and so impose the additional gauge condition

Ā0(τ) = 0.

This determines χres. up to the addition of a global constant, so there is very little remaining gauge
freedom. Indeed, constants are irrelevant for the gauge transformation of Aa and only impart a constant
phase change in φ, so we have now fixed the gauge as completely as possible. We call this stronger gauge
fixing condition

/∇ ·A = 0, Ā0 = 0 (6.4)

strong Coulomb gauge. For us, the most useful feature of the strong Coulomb gauge will be the fact that
in this gauge A0 will obey the Poincaré inequality on each leaf S3

τ of F ,

‖A0‖L2(τ) 6 C‖ /∇A0‖L2(τ).
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In strong Coulomb gauge the field equations (6.1) are equivalent to the system

�φ+ 2iA0φ̇− 2iA · /∇φ+ (1−A2
0 + |A|2 + iȦ0)φ = 0,

�A + (2 + |φ|2)A = − Im(φ̄ /∇φ) + /∇Ȧ0,

− /∆A0 + |φ|2A0 = − Im(φ̄φ̇),

/∇ ·A = 0,

Ā0(τ) = 0.

(6.5)

We do not prescribe initial data on A0 since it is non-dynamical: it is completely determined by φ and
φ̇ via the elliptic equation on each slice of constant τ . It is convenient to incorporate the constraint
/∇ ·A = 0 into the equations by projecting the equation for A onto divergence free 1-forms on S3. Let P
be this projection (see Appendix A.1); then since

/∇ ·�A = �( /∇ ·A)− 2 /∇ ·A = 0

and
curl /∇Ȧ0 = 0,

applying P to the equation for A gives

�A + 2A + P
(
|φ|2A

)
= −P

(
Im(φ̄ /∇φ)

)
.

Thus the system (6.5) is equivalent to

�φ+ 2iA0φ̇− 2iA · /∇φ+ (1−A2
0 + |A|2 + iȦ0)φ = 0,

�A + 2A + P
(
|φ|2A

)
= −P

(
Im(φ̄ /∇φ)

)
,

− /∆A0 + |φ|2A0 = − Im(φ̄φ̇),

Ā0(τ) = 0,

(6.6)

provided one considers divergence-free initial data for A and Ȧ. Indeed, it is easily seen that v = /∇ ·A
satisfies

�v = 0,

so v ≡ 0 whenever v = 0 and v̇ = 0 initially.
In addition to the restriction /∇ · A0 = 0 = /∇ · A1 on the initial data, the extra gauge condition

Ā0 = 0 restricts the set of initial data further. Suppose we prescribe initial data φ(τ = 0) = φ0 and
φ̇(τ = 0) = φ1. We must then solve for A0(τ = 0) = a0 by solving

− /∆a0 + |φ0|2a0 = − Im(φ̄0φ1), (6.7)

so we must choose the initial data so that this solution has ā0 = 0. Because A0 is non-dynamical, it is
not possible to write down an evolution equation for Ā0, but the gauge Ā0 = 0 is propagated nonetheless.
This can be seen by simply replacing all instances of A0 in the system (6.6) with A◦0

..= A0 − Ā0 and
solving the system for A◦0 in the space of mean zero functions. While A0 need not part of the initial data
(prescribing (φ,A, φ̇, Ȧ)|Σ = (φ0,A0, φ1,A1) is enough), we can consider A0 as part of the initial data if
it is equal to the a0 obtained by solving the elliptic equation initially.

We call data satisfying the above conditions admissible.

Remark 6.1. The condition ā0 = 0 is a condition on the initial data for φ and can be seen explicitly as
follows. Consider the operator

L ..= − /∆ + |φ0|2
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on S3 and assume that φ0 is not identically zero (if it is, then the equation becomes /∆a0 = 0 and we
can trivially choose the zero solution). We can classify the kernel of L if the data (φ0, φ1) is sufficiently
regular, say (φ0, φ1) ∈ H2(S3)×H1(S3). Multiplying the equation Lu = 0 by u and integrating we get∫

S3
| /∇u|2 dvs3 +

∫
S3
|φ0|2u2 dvs3 = 0,

so that /∇u = 0. If u ∈ H2(S3) ↪→ C0(S3), continuity of u and ‖φ0u‖L2 = 0 imply that u ≡ 0. Thus as an
operator from H2(S3) to L2(S3)3, L has trivial kernel. It follows from standard elliptic theory that the
equation Lu = ψ has a unique solution u ∈ H2(S3) for ψ ∈ L2(S3), which we write as u = L−1ψ. Since
(φ0, φ1) ∈ H2(S3)×H1(S3) ensures4 that φ̄0φ1 ∈ L2(S3), we have

a0 = −L−1 Im(φ̄0φ1) = ( /∆− |φ0|2)−1 Im(φ̄0φ1).

The requirement ā0 = 0 may thus be written as the condition∫
S3

( /∆− |φ0|2)−1 Im(φ̄0φ1) dvs3 = 0 (6.8)

on the initial data (φ0, φ1).

Remark 6.2. If one defines the electric field Ea ..= FabT
b, then the index a = 0 Maxwell’s equation in

(3.2) reads
/∇ ·E = Im(φ̄D0φ).

Integrating this over S3 shows that ∫
S3

Im(φ̄D0φ) dvs3 = 0.

In flat space the same observation imposes precise decay rates on the eletric field E at spatial infinity i0

(and in particular implies a non-zero r−2 term), so the source term Im(φ̄D0φ) is said to correspond to
charge at i0. Recent work by Yang and Yu [57] and Candy, Kauffman, and Lindblad [10] quantifies such
non-zero charge decay rates of the Maxwell-scalar field system in flat space. In de Sitter space, however,
one cannot have any charge at infinity since there is no spatial infinity.

Remark 6.3. The system (6.6) in principle exhibits the null structure of Klainerman and Machedon [29].
However, their original null form estimates [28] rely on the structure of the real numbers to use Fourier
techniques, and are not immediately extendible to curved space.

7 Well-Posedness

We state a classical theorem, due to Choquet-Bruhat, and apply it to our case. It should be noted that
the original theorem is slightly more general (for example, it considers the Dirac–Maxwell–Klein–Gordon
system), but we do not wish to clutter the presentation with unnecessary details. Let I be an interval in
R and let

Em(Sn × I) ..=

m⋂
k=0

Ckb (I;Hm−k(Sn))

be the standard finite m-energy space for hyperbolic systems. The following theorem elucidates why first
order (that is, H1) energy estimates are insufficient to construct a scattering theory for the Maxwell-scalar
field system and why H2 estimates are good enough (2 > 3/2).

3For φ0, u ∈ H2(S3) it is easy to check that |φ0|2u ∈ L2(S3), so L does indeed map into L2(S3).
4In fact, H2(S3) ·H1(S3) ⊂ H1(S3), by Sobolev Embedding.
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Theorem 7.1 (Y. Choquet-Bruhat, [11]). Consider the system (3.2) on Sn × R. Let T be the timelike
unit normal to Snτ ..= Sn × {τ}, set Ea

..= FabT
b = ∇aA0 − Ȧa, and suppose that we are given data a,

φ0 ∈ Hm(Sn0 ) and E, φ1 ∈ Hm−1(Sn0 ) satisfying the constraint

/∇ ·E = a0|φ0|2 + Im(φ̄0φ1), (†)

where /∇ is the Levi–Civita connection on Sn0 . Then there exists an interval Iσ = (−σ, σ) ⊂ R and
(Aa, φ) ∈ Em(Sn × Iσ) satisfying the system (3.2) and the Lorenz gauge condition ∇aAa = 0 such that

A|Sn0 = a, F · T |Sn0 = E, φ|Sn0 = φ0, φ̇|Sn0 = φ1

if m > n/2. The supremum of such numbers σ > 0 depends continuously on

M1 = ‖a‖Hm + ‖φ0‖Hm + ‖φ1‖Hm−1 + ‖E‖Hm−1

and tends to infinity as M1 tends to zero. The solution (A, φ) is unique in Em(Sn × Iσ) up to gauge
transformations preserving the Lorenz gauge.

Corollary 7.2. Consider the system (6.6) on E = S3 ×R and suppose that for m > 2 we are given data
A0, φ0 ∈ Hm(S3

0) and A1, φ1 ∈ Hm−1(S3
0) satisfying the strong Coulomb gauge initially. Then there

exists an interval Iσ = (−σ, σ) ⊂ R and (A0,A, φ) ∈ Em(S3 × Iσ) satisfying the system (6.6) and the
strong Coulomb gauge conditions Ā0 = 0, /∇ ·A = 0 such that

A|S30 = A0, Ȧ|S30 = A1, φ|S30 = φ0, φ̇|S30 = φ1.

The supremum of such numbers σ > 0 depends continuously on

M2 = ‖a0‖Hm + ‖A0‖Hm + ‖A1‖Hm−1 + ‖φ0‖Hm−1 + ‖φ1‖Hm−1 ' Sm[φ,A](0)1/2

and tends to infinity as M2 tends to zero, where a0 is determined by φ0 and φ1 via the elliptic equation
(6.7) on S3

0. The solution (A0,A, φ) is unique in Em(S3× Iσ) up to gauge transformations preserving the
strong Coulomb gauge5.

Proof. Given admissible φ0 ∈ Hm(S3
0) and φ1 ∈ Hm−1(S3

0), the equation

− /∆a0 + |φ0|2a0 = − Im(φ̄0φ1)

on S3
0 has a unique solution a0 in Hm which by eq. (6.8) satisfies ā0 = 0. We define E ..= /∇a0 − A1,

which by construction satisfies (†). We may thus apply Theorem 7.1. Note that we do not prescribe
Ȧ0, but instead construct it so that the Lorenz gauge condition is satisfied initially. The Lorenz gauge is
then propagated by the equations (3.2) in Lorenz gauge (but note that, of course, the strong Coulomb
gauge is not). We thus have a solution (Aa, φ) ∈ Em(S3 × Iσ) of (3.2) satisfying ∇aAa = 0 throughout
S3 × Iσ. Now perform a gauge transformation as in Section 6.1 to convert this solution to a solution
(A0,A, φ) ∈ Em(S3 × Iσ) of (6.6) satisfying the strong Coulomb gauge. It is easy to see that this gauge
transformation preserves Em regularity, while uniqueness up to gauge transformations is also clear. As
for the continuous dependence of σ on the data, we note that

M1 = ‖a‖H2 + ‖φ0‖H2 + ‖φ1‖H1 + ‖E‖H1

. ‖a0‖H2 + ‖A0‖H2 + ‖φ0‖H2 + ‖φ1‖H1 + ‖ /∇a0‖H1 + ‖A1‖H1

. ‖a0‖H2 + ‖A0‖H2 + ‖A1‖H1 + ‖φ0‖H2 + ‖φ1‖H1 = M2,

and similarly M2 .M1. Thus M1 'M2 and we are done.

5Recall that the gauge transformations preserving the strong Coulomb gauge are just the trivial ones χ = eiθ for global
constants θ ∈ R.
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8 Energies

8.1 The Maxwell Sector

For ease of presentation we treat the Maxwell and the scalar field sectors of the energy-momentum tensor
Tab separately. The energy-momentum tensor for the Maxwell sector in terms of the Maxwell field Fab
on E is

Tab[F ] = −F c
a Fbc +

1

4
eabFcdF

cd,

or in terms of the potential Aa

Tab[A] =−∇aAc∇bAc +∇cAa∇bAc +∇aAc∇cAb −∇cAa∇cAb

+
1

2
eab
(
∇cAd∇cAd −∇cAd∇dAc

)
.

The Maxwell sector energy density with respect to the foliation F is given by the component

T00[A] = TabT
aT b

= −ȦcȦc + 2Ȧc∇cA0 −∇cA0∇cA0 +
1

2

(
∇cAd∇cAd −∇cAd∇dAc

)
,

where in the above we have denoted by A0
..= T aAa and Ȧa ..= T b∇bAa. Note that the metric e splits as

the direct sum e = gR⊕(−s3), so in particular the full connection ∇ also splits as ∇ = ∇R⊕∇s3 = ∂τ⊕ /∇.
This can also be seen at the level of the Christoffel symbols on E in Proposition A.3. Furthermore, there
is no curvature in the τ direction (see Proposition A.5), so in particular ∂τ commutes with the 3-sphere
derivatives, [∂τ , /∇] = 0. We have

T00[A] =
1

2
|Ȧ|2 +

1

2
| /∇A0|2 +

1

2
| /∇A|2 − Ȧ · /∇A0 −

1

2
( /∇µAν)( /∇νAµ). (8.1)

We impose the Coulomb gauge
/∇ ·A = 0

on each S3
τ ' S3 so that the last two terms become non-negative-definite upon integration by parts:∫

S3
−Ȧ · /∇A0 dvs3 =

∫
S3
A0 /∇ · Ȧ dvs3 = 0,

and ∫
S3
−1

2
( /∇µAν)( /∇νAµ) dvs3 =

∫
S3

(
1

2
Aµ /∇µ /∇νAν − 1

2
R(s3)µνA

µAν

)
dvs3

=

∫
S3
|A|2 dvs3 .

Thus the Maxwell energy on surfaces of constant τ is

Eτ [A] ..=

∫
S3

T00[A] dvs3(τ)

' ‖A‖2H1(τ) + ‖Ȧ‖2L2(τ) + ‖ /∇A0‖2L2(τ)

= S1[A](τ) + ‖ /∇A0‖2L2(τ).

Imposing the additional condition Ā0(τ) = 0, one has that ‖A0‖2L2(S3) . ‖ /∇A0‖2L2(S3), so

Eτ [A] ' S1[A](τ) (8.2)

for all τ ∈ R.
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8.1.1 Higher Order Energies

More generally, for a 1-form α set

Tab[α] ..= −∇aαc∇bαc +∇cαa∇bαc +∇aαc∇cαb −∇cαa∇cαb

+
1

2
eab
(
∇cαd∇cαd −∇cαd∇dαc

)
.

When αa = Aa, this is, of course, just the Maxwell energy-momentum tensor written out in terms of the
potential. As in eq. (8.1), we have

T00[α] =
1

2
|α̇|2 +

1

2
| /∇α0|2 +

1

2
| /∇α|2 − α̇µ /∇

µ
α0 −

1

2
( /∇µαν)( /∇ναµ).

Integrating by parts as before we obtain

Eτ [α] ..=

∫
S3

T00[α] dvs3

=
1

2

∫
S3
|α̇|2 dvs3 +

1

2

∫
S3
| /∇α0|2 dvs3 +

1

2

∫
S3
| /∇α|2 dvs3

+

∫
S3
α0 /∇µα̇µ dvs3 −

1

2

∫
S3
| /∇ ·α|2 dvs3 +

∫
S3
|α|2 dvs3 .

For our second order estimates we will want to set αa = Xµ
i
/∇µAa ..= /∇iAa and sum over i for a basis of

vector fields {Xi}i on S3 (e.g. a basis of left-invariant vector fields on S3 ' SU(2)). The first term in the
above is then clearly ∑

i

|α̇|2 =
∑
i

/∇iȦµ /∇iȦµ = | /∇Ȧ|2,

the second term becomes∑
i

| /∇α0|2 =
∑
i

/∇µ /∇iA0 /∇
µ
/∇iA0 = | /∇2

A0|2 + l.o.t.s,

the third term becomes ∑
i

| /∇α|2 =
∑
i

/∇µ /∇iAν /∇
µ
/∇iAν = | /∇2

A|2 + l.o.t.s,

the fourth term, after commuting derivatives to impose the Coulomb gauge /∇ ·A = 0, is∑
i

α0 /∇µα̇µ =
∑
i

/∇iA0 /∇µ /∇iȦµ = l.o.t.s,

and the fifth term similarly becomes∑
i

| /∇ ·α|2 =
∑
i

/∇µ /∇iAµ /∇ν /∇i /A
ν

= l.o.t.s,

where in the above we have written /∇j ..= Xµ
j
/∇µ, and the lower order terms are at most quadratic and

of order zero and one in derivatives of Aa. The sixth and final term is∑
i

|α|2 =
∑
i

| /∇iA|2 = l.o.t.s.
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The lower order terms can be controlled by Eτ [A] ' S1[A](τ), so we can find a constant C > 0 large
enough such that

Eτ [A] +
∑
i

Eτ [ /∇iA] ' CEτ [A] +
∑
i

Eτ [ /∇iA]

' ‖A‖2H2(τ) + ‖Ȧ‖2H1(τ) + ‖ /∇A0‖2H1(τ)

= S2[A](τ) + ‖ /∇A0‖2H1(τ).

As before, the strong Coulomb gauge implies ‖A0‖L2 . ‖ /∇A0‖L2 , and so

Eτ [A] +
∑
i

Eτ [ /∇iA] ' S2[A](τ). (8.3)

Similarly, it is easy to see that the strong Coulomb gauge gives

m−1∑
k=0

Eτ [ /∇kA] ' Sm[A](τ),

where Eτ [ /∇kA] denotes
∑
i1,...,ik

Eτ [ /∇i1 . . . /∇ikA].

8.2 The Scalar Field Sector

The energy-momentum tensor for the scalar field sector on E is

Tab[φ] = D(aφDb)φ−
1

2
eabDcφDcφ+

1

2
eab|φ|2,

and we calculate

T00[φ] =|D0φ|2 −
1

2
DcφDcφ+

1

2
|φ|2

=
1

2
|D0φ|2 +

1

2
/Dµφ/D

µ
φ+

1

2
|φ|2

and

Eτ [φ] =
1

2
‖D0φ‖2L2(τ) +

1

2
‖/Dφ‖2L2(τ) +

1

2
‖φ‖2L2(τ),

where D0φ = φ̇+ iA0φ and /Dµ = /∇µ + iAµ. More generally, we set

Tab[ψ] = D(aψDb)ψ −
1

2
eabDcψDcψ +

1

2
eab|ψ|2

and

Eτ [ψ] =
1

2
‖D0ψ‖2L2(τ) +

1

2
‖/Dψ‖2L2(τ) +

1

2
‖ψ‖2L2(τ)

for any complex scalar field ψ on E. As with the Maxwell sector, we will want to choose ψ = /∇iφ for our
second order estimates.
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8.2.1 Conversion Between Geometric and Sobolev Energies

Proposition 8.1. For any fixed τ ∈ R and any sufficiently smooth complex scalar field ψ on E there
exists ε > 0 small enough such that if S1[A](τ) 6 ε, then

‖ /∇ψ‖2L2(τ) . Eτ [ψ].

Proof. We suppress the τ variable. Clearly

‖ /∇ψ‖2L2 . ‖/Dψ‖2L2 + ‖Aψ‖2L2 . E [ψ] + ‖A‖2L6‖ψ‖2L3 .

Now since S3 is compact, ‖ψ‖L3 . ‖ψ‖L6 , and by Sobolev Embedding (Theorem B.4)

‖A‖2L6 . ‖ /∇A‖2L2 + ‖A‖2L2 . S1[A]

and
‖ψ‖2L6 . ‖ /∇ψ‖2L2 + ‖ψ‖2L2 . ‖ /∇ψ‖2L2 + E [ψ].

This gives

‖ /∇ψ‖2L2 6 C(1 + S1[A])E [ψ] + CS1[A]‖ /∇ψ‖2L2 6 Cε‖ /∇ψ‖2L2 + C(1 + ε)E [ψ],

so

‖ /∇ψ‖2L2 6 C

(
1 + ε

1− εC

)
E [ψ] . E [ψ]

for ε > 0 small enough.

Proposition 8.2. For any fixed τ ∈ R and any sufficiently smooth complex scalar field ψ on E there
exists ε > 0 such that if S1[A](τ) 6 ε, then

‖ψ̇‖2L2(τ) . (1 + S1[A0](τ)) Eτ [ψ].

Proof. Working similarly to the previous proposition,

‖ψ̇‖2L2 . ‖D0ψ‖2L2 + ‖A0ψ‖2L2 . E [ψ] + ‖A0‖2L6‖ψ‖2L3 . E [ψ] + ‖A0‖2H1‖ψ‖2L6 .

Also ‖ψ‖2L6 . ‖ /∇ψ‖2L2 + ‖ψ‖2L2 , so

‖ψ̇‖2L2 . E [ψ] + S1[A0]
(
‖ /∇ψ‖2L2 + ‖ψ‖2L2

)
. (1 + S1[A0]) E [ψ] + S1[A0]‖ /∇ψ‖2L2 .

Proposition 8.1 now gives the result for small S1[A].

Proposition 8.3. For any fixed τ ∈ R and any sufficiently smooth complex scalar field ψ on E one has

‖/Dψ‖2L2(τ) . S1[ψ](τ)(1 + S1[A](τ)).

Proof. This is a simple consequence of the compactness of S3 and the Sobolev Embedding Theorem as
above,

‖/Dψ‖2L2 . ‖ /∇ψ‖2L2 + ‖Aψ‖2L2 . ‖ /∇ψ‖2L2 + ‖A‖2L6‖ψ‖2L6 . S1[ψ] + S1[A]S1[ψ].

Proposition 8.4. For any fixed τ ∈ R and any sufficiently smooth complex scalar field ψ on E one has

‖D0ψ‖2L2(τ) . (1 + S1[A0](τ))S1[ψ](τ).
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Proof. This follows from the same splitting and embedding as the previous propositions,

‖D0ψ‖2L2 . ‖ψ̇‖2L2 + ‖A0ψ‖2L2 . S1[ψ](1 + ‖A0‖2H1) . (1 + S1[A0])S1[ψ].

Theorem 8.5. For any fixed τ ∈ R and any sufficiently smooth complex scalar field ψ on E there exists
ε > 0 such that if S1[A] 6 ε, then

S1[ψ](τ) ' E [ψ](τ).

Proof. Suppose S1[A] is small. Then in particular both S1[A] and S1[A0] are small, so by Proposition 8.1
‖ /∇ψ‖2L2 . E [ψ]. By Proposition 8.2, ‖ψ̇‖2L2 . E [ψ], so

S1[ψ] . E [ψ].

Conversely, by Propositions 8.3 and 8.4, ‖/Dψ‖2L2 . S1[ψ] and ‖D0ψ‖2L2 . S1[ψ], so

E [ψ] . S1[ψ].

In particular, E [φ] ' S1[φ] and E [ /∇φ] ' S1[ /∇φ]. Since S1[φ] + S1[ /∇φ] ' S2[φ], one then has

Eτ [φ] + Eτ [ /∇φ] ' S2[φ](τ) (8.4)

if S1[A](τ) is sufficiently small. Similarly,

m−1∑
k=0

Eτ [ /∇kφ] ' Sm[φ](τ)

if S1[A](τ) is sufficiently small.

8.3 Elliptic Estimates

As we have already seen, one useful feature of the Coulomb gauge is that the field equation for A0 becomes
elliptic,

− /∆A0 + |φ|2A0 = − Im(φ̄φ̇). (8.5)

Even though the component A0 is non-dynamical, it still carries energy. This energy is controlled by φ̇
as follows.

Proposition 8.6. The non-dynamical component A0 satisfies the estimates

‖ /∇A0‖2L2(τ) + ‖φA0‖2L2(τ) + ‖A0‖2L2(τ) . ‖φ̇‖2L2(τ)

for every fixed τ ∈ R.

Proof. Multiplying equation (8.5) by A0 and integrating, we have

‖ /∇A0‖2L2 + ‖φA0‖2L2 = −
∫
S3

Im(φ̄φ̇)A0 dvs3 6 ‖φA0‖L2‖φ̇‖L2 6
1

2
‖φA0‖2L2 +

1

2
‖φ̇‖2L2 ,

which gives the first two estimates. The third estimate follows from the Poincaré inequality for A0.

We will need these estimates to extend energy smallness assumptions on A and φ to A0.
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9 Energy Estimates

9.1 Conservation of Energy

For general α, ψ one finds that

∇aTab[α] = M(α)a (∇aαb −∇bαa) ,

∇aTab[ψ] =
1

2
S(ψ)Dbψ +

1

2
S(ψ)Dbψ + Fab Im

(
ψ̄Daψ

)
.

(9.1)

When αa = Aa and ψ = φ, the field equations M(A)a = − Im
(
φ̄Daφ

)
and S(φ) = 0 imply that

∇aTab[φ,A] = ∇a(Tab[A] + Tab[φ]) = Fab
(
Im
(
φ̄Daφ

)
− Im

(
φ̄Daφ

))
= 0.

9.2 H1 estimates

Consider admissible initial data for the system (6.6). We can make no a priori assumptions about the
smallness of the non-dynamical component A0, but we will of course be able to extract all the required
information about A0 using the elliptic equation (8.5).

Theorem 9.1. There exists an ε > 0 such that if S1[φ,A](0) 6 ε, then

S1[φ,A](τ) ' S1[φ,A](0)

for all τ ∈ R.

Proof. Since ∇aTab[φ,A] = 0 and T b = ∂τ is Killing on E, integrating e1
..= ∇a(T bTab[φ,A]) = 0 over

the region S3 × [0, τ ] for any τ > 0 immediately gives

0 =

∫
S3×[0,τ ]

e1 dv =

∫
S3τ

T00[φ,A] dvs3 −
∫
S30

T00[φ,A] dvs3 ,

i.e.
Eτ [φ] + Eτ [A] = Eτ [φ,A] = E0[φ,A] = E0[φ] + E0[A]. (9.2)

Now the smallness assumption S1[φ,A](0) 6 ε implies that S1[A](0) 6 ε and S1[φ](0) 6 ε, so by
Proposition 8.6

‖ /∇A0‖2L2(0) . S1[φ](0) 6 ε,

and so S1[A](0) . ε. Then by Theorem 8.5, E0[φ] ' S1[φ](0). Now equation (8.2) reads Eτ [A] ' S1[A](τ),
which in particular holds at τ = 0, so we have E0[φ] + E0[A] ' S1[φ](0) + S1[A](0), and so by eq. (9.2)

Eτ [φ] + Eτ [A] ' S1[φ](0) + S1[A](0).

This means that Eτ [φ]+Eτ [A] is small too, Eτ [φ,A] . ε. In particular, Eτ [A] ' S1[A](τ) is small, so again
by Theorem 8.5, Eτ [φ] ' S1[φ](τ). We deduce that

S1[φ](τ) + S1[A](τ) ' S1[φ](0) + S1[A](0) (9.3)

for all τ > 0. The same argument works for τ < 0.
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9.3 H2 estimates

9.3.1 A Nonlinear Grönwall Inequality

Some useful small data nonlinear Grönwall inequalities may be proved by reduction to the standard
Grönwall inequality using a careful change of variables. More precisely, suppose g(τ) satisfies a nonlinear
differential inequality, say

g′(τ) 6 F (g(τ)) .

If we can find a function G such that

G(g(τ))′ = G′(g(τ))g′(τ)
!
6 G(g(τ)),

then we can apply the standard Grönwall inequality to G(τ) ..= G(g(τ)) and possibly invert G(g) to
recover an inequality for g. This will not in general produce an immediately useful statement due to the
nonlinear nature of F (and hence G), but with a smallness assumption on g(0) the offending terms can
frequently be dealt with. Clearly finding such a G amounts to solving the differential inequality

G′(g)F (g) 6 G(g).

Lemma 9.2. Let τ ∈ [0, 1] and f : [0, 1]→ R be a continuous non-negative function. Suppose f satisfies
the inequality

f(τ) 6 f(0) +

∫ τ

0

f(σ)P (f(σ)1/2) dσ

for some polynomial P with positive coefficients. Then there exists ε > 0 small enough such that if
f(0) 6 ε, then

f(τ) 6 Cf(0)

for some C > 1 and all τ ∈ [0, 1].

Proof. The case when P has order zero is trivial, so assume that P (x) =
∑d
k=0 Pkx

k for some d > 0 and
some non-negative real numbers {Pk}k. We may reduce the inequality as follows,

f(τ) 6 f(0) +

∫ τ

0

f(σ)P (f(σ)1/2) dσ

6 f(0) +

∫ τ

0

d∑
k=0

Pkf(σ)k/2+1 dσ

6 f(0) +

∫
{0<σ<τ : f(σ)<1}

d∑
k=0

Pkf(σ)k/2+1 dσ

+

∫
{0<σ<τ : f(σ)>1}

d∑
k=0

Pkf(σ)k/2+1 dσ

6 f(0) +

∫ τ

0

d∑
k=0

Pkf(σ) dσ +

∫ τ

0

d∑
k=0

Pkf(σ)d/2+1 dσ

6 f(0) +

∫ τ

0

Df(σ) dσ +

∫ τ

0

Df(σ)d/2+1 dσ,

where D = (d+ 1) maxk Pk. Now set

g(τ) ..= f(0) +

∫ τ

0

Df(σ) dσ +

∫ τ

0

Df(σ)d/2+1 dσ.
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Then f(τ) 6 g(τ), f(0) = g(0), and g′(τ) 6 Df(τ) +Df(τ)d/2+1 6 Dg(τ)
(
1 + g(τ)d/2

)
. Defining

G(τ) ..= g(τ)1/DD−2/(Dd)
(

1 + g(τ)d/2
)−2/(Dd)

and differentiating, one obtains

G′(τ) = g′(τ)g(τ)1/D−1D−2/(Dd)−1
(

1 + g(τ)d/2
)−2/(Dd)−1

6 g(τ)1/DD−2(Dd)
(

1 + g(τ)d/2
)−2/(Dd)

,

so that G′(τ) 6 G(τ). Since τ is contained in a compact interval, this gives G(τ) . G(0), or equivalently

g(τ)1/D
(

1 + g(τ)d/2
)−2/(Dd)

. g(0)1/D
(

1 + g(0)d/2
)−2/(Dd)

. g(0)1/D.

Rearranging gives

g(τ)d/2 . g(0)d/2
(

1 + g(τ)d/2
)
,

so if g(0) = f(0) is small enough one has g(τ)d/2 . g(0)d/2 and so

f(τ) 6 g(τ) 6 Cg(0) 6 Cf(0).

Remark 9.3. Clearly the above proof goes through exactly the same with [0, 1] replaced with any interval
[0, r], r ∈ R.

9.3.2 Commutators

Proposition 9.4. One has the following bounds on the commutators of /∇ with the field equation operators
M and S: ∣∣[ /∇, M]A

∣∣
S3 . | /∇

2
A|+ | /∇A|+ | /∇Ȧ0|,

and ∣∣[ /∇, S](φ)
∣∣ . |φ̇ /∇A0|+ |φ /∇Ȧ0|+ |φA0 /∇A0|+ | /∇

2
φ|+ |φ /∇2

A|
+ |A /∇φ|+ | /∇φ|+ |φ /∇A|+ |Aφ|+ | /∇φ /∇A|+ |φA /∇A|.

Proof. Note that in the following the index i always refers to a contraction with a basis vector field Xi.
Recall that the operator Mµ on A is given by M(A)µ = �Aµ − /∇µȦ0 − 2Aµ, so for any i

|[ /∇i, M](A)|S3 = | /∇iM(A)µ −M( /∇iA)µ|

=
∣∣∣ /∇i (�Aµ − /∇µȦ0 − 2Aµ

)
−�( /∇iAµ) + /∇µ /∇iȦ0 + 2 /∇iAµ

∣∣∣
=
∣∣∣ /∇i /∇ν /∇νAµ − /∇ν /∇ν(Xλ

i /∇λAµ) + /∇µXν
i /∇νȦ0

∣∣∣
6 C

[
| /∇2

A|+ | /∇A|+ | /∇Ȧ0|
]
,
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where the constant C depends on the geometry of S3. To calculate the other commutator we need a
couple of preliminary formulae. Let ψ be any sufficiently regular complex scalar field. Then

[ /∇i, D0](ψ) = /∇i(ψ̇ + iA0ψ)−D0 /∇iψ = iψ /∇iA0,

and similarly
[ /∇i, /Dµ](ψ) = −( /∇µXν

i ) /∇νψ + iψ /∇iAµ,

so

[ /∇i, D0D0](φ) = D0[ /∇i, D0](φ) + [ /∇i, D0](D0φ)

= D0(iφ /∇iA0) + iD0φ /∇iA0

= iφ /∇iȦ0 + 2iφ̇ /∇iA0 − 2φA0 /∇iA0.

Further, for any vector field V on S3

[ /∇i, /Dµ]Vµ = /∇i( /∇µVµ + iAµVµ)− ( /∇µ + iAµ)( /∇iVµ)

= /∇i /∇µVµ − /∇µ /∇iVµ + i( /∇iAµ)Vµ

6 C
[
| /∇V|+ |V|+ |V /∇A|

]
,

where, as before, C depends on the geometry of S3. Then

[ /∇i, /Dµ /D
µ
]φ = /D

µ
[ /∇i, /Dµ]φ+ [ /∇i, /Dµ]/D

µ
φ

6 /D
µ (− /∇µXν

i /∇νφ+ iφ /∇iAµ

)
+ C

[
| /∇/Dφ|+ |/Dφ|+ |/Dφ /∇A|

]
6 − /∆Xν

i /∇νφ− /∇µXν
i /∇

µ
/∇νφ+ i /∇µφ /∇iAµ + iφ /∇µ /∇iAµ

− iAµ /∇µXν
i /∇νφ− φAµ /∇iAµ

+ C
[
| /∇2

φ|+ | /∇(Aφ)|+ | /∇φ|+ |Aφ|+ | /∇φ /∇A|+ |Aφ /∇A|
]

. | /∇φ|+ | /∇2
φ|+ | /∇φ /∇A|+ |φ /∇2

A|+ |φ /∇A|+ |A /∇φ|
+ |φA /∇A|+ |Aφ|.

Putting these together, we have

[ /∇i, S]φ = [ /∇i, DaDa + 1]φ

= [ /∇i, D0D0]φ− [ /∇i, /D
µ
/Dµ]φ

. |φ /∇Ȧ0|+ |φ̇ /∇A0|+ |φA0 /∇A0|+ | /∇φ|+ | /∇
2
φ|+ | /∇φ /∇A|

+ |φ /∇2
A|+ |φ /∇A|+ |A /∇φ|+ |φA /∇A|+ |Aφ|.

Most of the terms in the above estimates we can control by the energy directly, with the exception of
time derivatives of A0. These terms we shall control using the elliptic equation for A0 and the evolution
equation for φ.

Proposition 9.5. For any fixed τ ∈ R there exists ε > 0 such that if S1[φ] < ε and Aa satisfies the
strong Coulomb gauge, then

‖Ȧ0‖2H1(τ) . S2[φ](τ)(1 + S1[A](τ))2.
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Proof. First note that in the strong Coulomb gauge Ā0(τ) = 0 for all τ , and so ˙̄A0(τ) = 0 for all τ as
well. Thus ‖Ȧ0‖L2 . ‖ /∇Ȧ0‖L2 , and we only need to estimate ‖ /∇Ȧ0‖L2 . Differentiating eq. (8.5) in τ ,
we have

− /∆Ȧ0 + |φ|2Ȧ0 = − Im(φ̄φ̈)− φ̄φ̇A0 − ˙̄φφA0.

Multiplying through by Ȧ0 and integrating we have

‖ /∇Ȧ0‖2L2 + ‖φȦ0‖2L2 6 ‖φȦ0‖L2‖φ̈‖L2 + 2‖φȦ0‖L2‖φ̇A0‖L2

which gives
‖ /∇Ȧ0‖2L2 + δ‖φȦ0‖2L2 . ‖φ̈‖2L2 + ‖φ̇A0‖2L2 (9.4)

for some 0 < δ < 1. We thus need to estimate ‖φ̈‖L2 , for which we shall use the field equation for φ,

�φ+ 2iA0φ̇− 2iA · /∇φ+ (1−A2
0 + |A|2 + iȦ0)φ = 0.

We estimate
|φ̈|2 . | /∆φ|2 + |A0φ̇|2 + |A /∇φ|2 + |φ|2 + |A2

0φ|2 + |A2φ|2 + |Ȧ0φ|2. (9.5)

With the exception of the term |Ȧ0φ|2, the right-hand side of eq. (9.5) will be easily controlled as we will
see shortly. To deal with the problematic term we will use smallness of the data. Integrating eq. (9.5)
over the 3-sphere we have

‖φ̈‖2L2 . ‖ /∆φ‖2L2 + ‖A0φ̇‖2L2 + ‖A /∇φ‖2L2 + ‖φ‖2L2 + ‖A2
0φ‖2L2 + ‖A2φ‖2L2 + ‖Ȧ0φ‖2L2

. ‖φ‖2H2 + ‖A0‖2L3‖φ̇‖2L6 + ‖A‖2L3‖ /∇φ‖2L6

+ ‖A0‖4L6‖φ‖2L6 + ‖A‖4L6‖φ‖2L6 + ‖Ȧ0‖2L3‖φ‖2L6

. ‖φ‖2H2 + ‖A0‖2H1‖φ̇‖2H1 + ‖A‖2H1‖φ‖2H2

+ ‖A0‖4H1‖φ‖2H1 + ‖A‖4H1‖φ‖2H1 + ‖Ȧ0‖2H1‖φ‖2H1

. S2[φ] + S1[A]S2[φ] + S1[A]S2[φ] + S1[A]2S1[φ] + S1[A]2S1[φ] + ‖Ȧ0‖2H1S1[φ]

. S2[φ](1 + S1[A])2 + ‖Ȧ0‖2H1S1[φ].

Putting this into eq. (9.4) gives

‖ /∇Ȧ0‖2L2 . S2[φ](1 + S1[A])2 + ‖Ȧ0‖2H1S1[φ],

so provided S1[φ] is sufficiently small the Poincaré inequality gives

‖ /∇Ȧ0‖2L2 . S2[φ](1 + S1[A])2.

9.3.3 Estimate Algebra

For ease of presentation we outline a schematic procedure to track how we bound the various terms arising
in our H2 estimates. The idea is simply to track the number of derivatives and their Sobolev exponents
of the error terms and check that they do not exceed certain critical values. Let f denote either A or φ,

let ∂ denote either the S3-derivatives /∇ or the τ -derivative ∂τ , and let ∂2 denote either /∇2
or ∂τ /∇ (that

is, not ∂2
τ ). Then all the error terms that we encounter will in fact be of the form

‖|∂2f |m|∂f |k|f |l‖L1(S3),
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where m, k, and l are non-negative integers and in particular m = 0, 1, or 2.
If m = 0, we have

‖|∂f |k|f |l‖L1 6 ‖f‖lL∞‖∂f‖kLk .

Now since S3 is compact, the Lebesgue spaces Lp(S3) form a decreasing sequence in p,

L∞(S3) ↪→ · · · ↪→ Lp(S3) ↪→ · · · ↪→ Lq(S3) ↪→ · · · ↪→ L1(S3),

p > q, where ↪→ denotes continuous inclusion. As S3 has dimension 3, by Sobolev Embedding we also
have

H1(S3) ↪→ L6(S3) and H2(S3) ↪→ C0, 12 (S3) ↪→ L∞(S3),

so provided k 6 6 we have
‖|∂f |k|f |l‖L1 . ‖f‖l2‖f‖k2 = ‖f‖k+l

2 ,

where
‖f‖2 ..= ‖f‖H2(S3) + ‖ḟ‖H1(S3)

(notice that the norm ‖ · ‖22 is the familiar Sobolev-type energy S2).
If m = 1, we perform the splitting

‖|∂2f ||∂f |k|f |l‖L1 =

∫
|∂2f ||∂f |k|f |l

6
∫
|∂2f |2 +

∫
|∂f |2k|f |2l 6 ‖f‖22 + ‖|∂f |2k|f |2l‖L1 .

Now provided 2k 6 6, the second term in the above may be dealt with as in the case m = 0, so we
have

‖|∂2f ||∂f |k|f |l‖L1 . ‖f‖22 + ‖f‖2(k+l)
2 .

Finally, when m = 2 it will in fact turn out that k is necessarily zero, so we will have

‖|∂2f |2|f |l‖L1 6 ‖f‖lL∞‖f‖22 . ‖f‖l+2
2 .

It will thus be sufficient to use the following prescription. For terms involving no |∂2f | (i.e. m = 0) we
shall check if k 6 6, and if so, conclude that the term is bounded by ‖f‖k+l

2 ; for terms involving |∂2f |
(i.e. m = 1), we shall check if k 6 3, and if so, conclude that the term is bounded by ‖f‖22 + ‖f‖2(k+l)

2 ;
finally, for terms with m = 2 we shall check that k = 0, and if so, conclude that these are bounded by
‖f‖l+2

2 . In the estimates that follow we will write down a term to be estimated,

|∂2f |m|∂f |k|f |l,

and underneath note down its ‘signature’ (m, k, l), as in

|∂2f |m|∂f |k|f |l
(m,k,l)

.

If the criteria outlined above are met (that is, k 6 6 for m = 0, k 6 3 for m = 1, and k = 0 for m = 2),
we shall tick the triplet,

|∂2f |m|∂f |k|f |l
(m,k,l)X

.

Altogether this notation will thus mean that

‖|∂2f |m|∂f |k|f |l‖L1(S3) . Q(‖f‖2)

for some polynomial Q with positive coefficients.
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9.3.4 H2 Error Terms

We now take αa = /∇iAa and ψ = /∇iφ in eq. (9.1) and estimate the second order error terms

e2
..=
∑
i

T b
(
∇aTab[ /∇iA] +∇aTab[ /∇iφ]

)
.

Equation (9.1) gives

e2 =
∑
i

−M( /∇iA)µ
(
/∇µ /∇iA0 − /∇iȦµ

)
+
∑
i

(
1

2
S( /∇iφ)D0( /∇iφ) +

1

2
S( /∇iφ)D0( /∇iφ)− ( /∇µA0 − Ȧµ) Im( /∇iφ̄ /D

µ
/∇iφ)

)
=.. e1

2 + e2
2,

and we consider e1
2 and e2

2 separately. We have

|e12| =

∣∣∣∣∣∑
i

−M( /∇iA)µ( /∇µ /∇iA0 − /∇iȦµ)

∣∣∣∣∣
6
∑
i

∣∣∣( /∇iM(A)µ − [ /∇i, M](A)µ
) (

/∇µ /∇iA0 − /∇iȦµ

)∣∣∣
.
∣∣ /∇(φ̄ /Dφ)

∣∣ [| /∇2
A0|+ | /∇A0|+ | /∇Ȧ|

]
+
[
| /∇2

A|+ | /∇A|+ | /∇Ȧ0|
] [
| /∇2

A0|+ | /∇A0|+ | /∇Ȧ|
]

.
[
| /∇φ|2 + | /∇φ||φ||A|+ | /∇2

φ||φ|+ | /∇A||φ|2 + | /∇φ||φ||A|
] [
| /∇2

A0|+ | /∇A0|+ | /∇Ȧ|
]

+
[
| /∇2

A|+ | /∇A|+ | /∇Ȧ0|
] [
| /∇2

A0|+ | /∇A0|+ | /∇Ȧ|
]

. | /∇2
A0|| /∇φ|2
(1,2,0)X

+ | /∇2
A0|| /∇φ||φ||A|

(1,1,2)X
+ | /∇2

A0|| /∇2
φ||φ|

(2,0,1)X
+ | /∇2

A0|| /∇A||φ|2
(1,1,2)X

+ | /∇2
A0|| /∇φ||φ||A|

(1,1,2)X
+ | /∇A0|| /∇φ|2

(0,3,0)X
+ | /∇A0|| /∇φ||φ||A|

(0,2,2)X
+ | /∇2

φ|| /∇A0||φ|
(1,1,1)X

+ | /∇A0|| /∇A||φ|2
(0,2,2)X

+ | /∇A0|| /∇φ||φ||A|
(0,2,2)X

+ | /∇Ȧ|| /∇φ|2
(1,2,0)X

+ | /∇Ȧ|| /∇φ||φ||A|
(1,1,2)X

+ | /∇Ȧ|| /∇2
φ||φ|

(2,0,1)X
+ | /∇Ȧ|| /∇A||φ|2

(1,1,2)X
+ | /∇Ȧ|| /∇φ||φ||A|

(1,1,2)X
+ | /∇2

A0|| /∇2
A|

(2,0,0)X
+ | /∇2

A0|| /∇A|
(1,1,0)X

+ | /∇2
A0|| /∇Ȧ0|
(2,0,0)X

+ | /∇2
A|| /∇A0|

(1,1,0)X
+ | /∇A0|| /∇A|

(0,2,0)X
+ | /∇Ȧ0|| /∇A0|

(1,1,0)X
+ | /∇2

A|| /∇Ȧ|
(2,0,0)X

+ | /∇Ȧ|| /∇A|
(1,1,0)X

+ | /∇Ȧ0|| /∇Ȧ|
(2,0,0)X

and

|e22| =

∣∣∣∣∣∑
i

(
1

2
S( /∇iφ)D0( /∇iφ) +

1

2
S( /∇iφ)D0( /∇iφ)− ( /∇µA0 − Ȧµ) Im( /∇iφ/D

µ /∇iφ)

)∣∣∣∣∣
6
∑
i

[
|S( /∇iφ)||D0( /∇iφ)|+ | /∇A0 − Ȧ|| /∇iφ||/D /∇iφ|

]
.
∑
i

|[ /∇i, S](φ)|
[
| /∇iφ̇|+ |A0 /∇iφ|

]
+
[
| /∇A0|+ |Ȧ|

]
| /∇φ|

[
| /∇2

φ|+ |A /∇φ|+ | /∇φ|
]

.
[
|φ̇ /∇A0|+ |φ /∇Ȧ0|+ |φA0 /∇A0|+ | /∇2

φ|+ |φ /∇2
A|+ | /∇A0|| /∇φ|2 + |Ȧ|| /∇φ|2
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+ |A /∇φ|+ | /∇φ|+ |φ /∇A|+ |Aφ|+ | /∇φ /∇A|+ |φA /∇A|
] [
| /∇φ̇|+ |A0 /∇φ|

]
+ | /∇2

φ|| /∇A0|| /∇φ|+ | /∇A0|| /∇φ|2|A|+ | /∇2
φ|| /∇φ||Ȧ|+ | /∇φ|2|Ȧ||A|+ | /∇A0|| /∇φ|2

+ |Ȧ|| /∇φ|2

. | /∇φ̇|| /∇A0||φ̇|
(1,2,0)X

+ | /∇Ȧ0|| /∇φ̇||φ|
(2,0,1)X

+ | /∇φ̇|| /∇A0||φ||A0|
(1,1,2)X

+ | /∇2
φ|| /∇φ̇|

(2,0,0)X
+ | /∇2

A|| /∇φ̇||φ|
(2,0,1)X

+ | /∇φ̇|| /∇φ||A|
(1,1,1)X

+ | /∇φ̇|| /∇φ|
(1,1,0)X

+ | /∇φ̇|| /∇A||φ|
(1,1,1)X

+ | /∇φ̇||A||φ|
(1,0,2)X

+ | /∇φ̇|| /∇φ|| /∇A|
(1,2,0)X

+ | /∇φ̇|| /∇A||A||φ|
(1,1,2)X

+ | /∇φ||φ̇|| /∇A0||A0|
(0,3,1)X

+ | /∇Ȧ0|| /∇φ||φ||A0|
(1,1,2)X

+ | /∇A0|| /∇φ||φ||A0|2
(0,2,3)X

+ | /∇2
φ|| /∇φ||A0|
(1,1,1)X

+ | /∇2
A|| /∇φ||φ||A0|

(1,1,2)X
+ | /∇φ|2|A0||A|

(0,2,2)X
+ | /∇φ|2|A0|

(0,2,1)X
+ | /∇φ|| /∇A||φ||A0|

(0,2,2)X

+ | /∇φ||φ||A0||A|
(0,1,3)X

+ | /∇φ|2| /∇A||A0|
(0,3,1)X

+ | /∇φ|| /∇A||φ||A0||A|
(0,2,3)X

+ | /∇2
φ|| /∇φ|| /∇A0|
(1,2,0)X

+ | /∇φ|2| /∇A0||A|
(0,3,1)X

+ | /∇2
φ|| /∇φ||Ȧ|
(1,2,0)X

+ | /∇φ|2|Ȧ||A|
(0,3,1)X

+ | /∇φ|2| /∇A0|
(0,3,0)X

+ | /∇φ|2|Ȧ|
(0,3,0)X

.

Altogether this says that
‖e2‖L1(S3) . Q

IV (‖(φ,A, A0)‖2)

for some polynomial QIV with positive coefficients. An inspection of the triplets (m, k, l) above shows
that each error term contains at least one full power of ‖f‖22, so in fact

‖e2‖L1 . ‖(φ,A, A0)‖22QIII (‖(φ,A, A0) ‖2)

.
(

S2[φ,A] + ‖Ȧ0‖2H1

)(
QII

(
S2[φ,A]1/2

)
+QI

(
‖Ȧ0‖H1

))
for polynomials QI,II,III. Now by Proposition 9.5, ‖Ȧ0‖2H1 . S2[φ](1+S1[A])2. At this point we can either

assume the first order estimates (Theorem 9.1), or bound ‖Ȧ0‖2H1 by a polynomial in S2[φ,A] of degree
higher than one; both methods are fine, but we will need to assume the first order estimates to close the
second order ones anyway, so assuming S1[φ,A] . 1 we have ‖Ȧ0‖2H1 . S2[φ,A]. Hence for any fixed τ

‖e2‖L1(τ) . S2[φ,A](τ)P
(

S2[φ,A](τ)1/2
)

(9.6)

for some polynomial P .

Theorem 9.6. Let I be a fixed compact interval in R containing zero. There exists ε > 0 such that if
S2[φ,A](0) 6 ε, then

S2[φ,A](τ) ' S2[φ,A](0)

for all τ ∈ I.

Proof. Integrating e2 over the region S3 × [0, τ ], τ > 0,∫
S3×[0,τ ]

e2 dv =

∫ τ

0

∫
S3
e2(σ) dvs3 dσ

=
∑
i

(
Eτ [ /∇iφ] + Eτ [ /∇iA]

)
−
∑
i

(
E0[ /∇iφ] + E0[ /∇iA]

)
.

(9.7)

From Theorem 9.1 we know that S1[φ,A](τ) ' S1[φ,A](0), and also that Eτ [A] ' S1[A](τ) and Eτ [φ] '
S1[φ](τ) for all τ . Furthermore, we have that S1[A](τ) is small, so by eq. (8.4)

Eτ [φ] +
∑
i

Eτ [ /∇iφ] ' S2[φ](τ).
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By eq. (8.3),

Eτ [A] +
∑
i

Eτ [ /∇iA] ' S2[A](τ),

so adding Eτ [φ,A] = E0[φ,A] to both sides of eq. (9.7) we have

Eτ [φ,A] +
∑
i

(
Eτ [ /∇iφ] + Eτ [ /∇iA]

)
= E0[φ,A] +

∑
i

(
E0[ /∇iφ] + E0[ /∇iA]

)
+

∫ τ

0

∫
S3
e2(σ) dvs3 dσ,

or equivalently

S2[φ,A](τ) ' S2[φ,A](0) +

∫ τ

0

∫
S3
e2(σ) dvs3 dσ. (9.8)

Now eq. (9.6) gives

S2[φ,A](τ) . S2[φ,A](0) +

∫ τ

0

‖e2‖L1(S3)(σ) dσ

. S2[φ,A](0) +

∫ τ

0

S2[φ,A](σ)P
(

S2[φ,A](σ)1/2
)

dσ.

By Lemma 9.2,
S2[φ,A](τ) . S2[φ,A](0)

for τ ∈ I. Equation (9.8) similarly shows that S2[φ,A](0) . S2[φ,A](τ), and so

S2[φ,A](τ) ' S2[φ,A](0).

for all τ ∈ I. In particular, picking I large enough to contain [−π/2, π/2] shows

S2[φ,A](I −) ' S2[φ,A](I +).

10 Higher Order Estimates

From here it is straightforward to play the same game for higher order estimates. It is clear that if for a
given τ and m > 1 the (m+ 1)-th Sobolev energy Sm+1[φ,A](τ) is small enough, then

m∑
k=0

Eτ [ /∇kφ] ' Sm+1[φ](τ) and

m∑
k=0

Eτ [ /∇kA] ' Sm+1[A](τ),

where as before Eτ [ /∇kφ] =
∑
i1,...,ik∈{1,2,3} Eτ [ /∇i1 . . . /∇ikφ], and similarly for Aa. We suppress sums over

the basis vector fields {Xi} from now. It is clear that to prove that

Sm+1[φ,A](τ) ' Sm+1[φ,A](0) (10.1)

it is enough to prove the estimate

‖em+1‖L1(τ) . Sm+1[φ,A](τ)P
(

Sm+1[φ,A](τ)1/2
)

(10.2)
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for a polynomial P , since then the proof of eq. (10.1) goes through exactly as in the proof of Theorem 9.6.
Now because

Hm+1(S3) ↪→ Cm−1(S3),

in our (m + 1)-th order estimates we need only track derivatives of order m and higher, since all the
others will be L∞-controlled by Sm+1. More precisely, since the Sm+1 energies control the L∞ norms

of /∇m−1
φ, /∇m−1

A, /∇m−2
φ̇ and /∇m−2

Ȧ, we will only track terms of higher order than these (and also
Ȧ0, which we will deal with separately as before). As before, one can write down the bounds for the
commutators of /∇ with the field equation operators M and S, acting this time on a general 1-form α
and a general scalar field ψ, ∣∣[ /∇, M](α)

∣∣
S3 . | /∇

2
α|+ | /∇α̇0|+ l.o.t.s,

and ∣∣[ /∇, S](ψ)
∣∣ . |ψ /∇Ȧ0|+ |ψ̇ /∇A0|+ | /∇

2
ψ|+ |ψ /∇2

A|+ l.o.t.s,

where the lower order terms are terms that are of order one or zero in derivatives of α, A, or ψ. Now
estimate the (m+ 1)-th error term:

em+1
..= T b

(
∇aTab[ /∇

m
A] +∇aTab[ /∇

m
φ]
)

= T b
(
M( /∇mA)a(∇a( /∇mA)b −∇b( /∇

m
A)a) + Re

(
S( /∇mφ)Db( /∇

m
φ)
)

+ (∇aAb −∇bAa) Im
(
/∇mφ̄Da /∇mφ

) )
6
∣∣∣M( /∇mA)µ( /∇µ( /∇mA0)− /∇mȦµ)

∣∣∣+
∣∣Re

(
S( /∇mφ)D0( /∇mφ)

)∣∣
+
∣∣∣( /∇µA0 − Ȧµ) Im

(
/∇mφ̄ /Dµ /∇mφ

)∣∣∣
.
∣∣M( /∇mA)

∣∣
S3

[
| /∇m+1

A0|+ | /∇mȦ|
]

+
∣∣S( /∇mφ)

∣∣ [| /∇mφ̇|+ |A0|| /∇mφ|
]

+
[
| /∇A0|+ |Ȧ|

] [
| /∇mφ|| /∇m+1

φ|+ | /∇mφ||A|| /∇mφ|
]

+ l.o.t.s

.
[
| /∇m+1

A0|+ | /∇mȦ|
] [ ∣∣ /∇mM(A)

∣∣
S3 +

∣∣[ /∇m, M](A)
∣∣
S3

]
+
[ ∣∣ /∇mS(φ)

∣∣
+
∣∣[ /∇m, S](φ)

∣∣ ]| /∇mφ̇|+ | /∇mφ|| /∇m+1
φ|
[
| /∇A0|+ |Ȧ|

]
+ l.o.t.s

.
[
| /∇m+1

A0|+ | /∇mȦ|
] [
| /∇m(φ/Dφ)|+ | /∇m−1

[ /∇, M](A)|+ |[ /∇, M]|( /∇m−1
A)|
]

+ | /∇mφ̇|
[
| /∇m−1

[ /∇, S](φ)|+ |[ /∇, S|( /∇m−1
φ)|
]

+ | /∇mφ|| /∇m+1
φ|
[
| /∇A0|+ |Ȧ|

]
+ l.o.t.s

.
[
| /∇m+1

A0|+ | /∇mȦ|
] [ ∣∣ /∇m(φ /∇φ+ Aφ2)

∣∣+
∣∣∣ /∇m−1

( /∇2
A + /∇Ȧ0 + l.o.t.s)

∣∣∣
+ | /∇m+1

A|+ | /∇mȦ0|+ l.o.t.s

]
+ | /∇mφ̇|

[ ∣∣∣ /∇m−1
(φ /∇Ȧ0 + φ̇ /∇A0 + /∇2

φ+ φ /∇2
A + l.o.t.s)

∣∣∣
+ | /∇m−1

φ|| /∇Ȧ0|+ | /∇m−1
φ̇|| /∇A0|+ | /∇m+1

φ|+ | /∇m−1
φ|| /∇2

A|
]

+ | /∇mφ|| /∇m+1
φ|
[
| /∇A0|+ |Ȧ|

]
+ l.o.t.s

.
[
| /∇m+1

A0|+ | /∇mȦ|
] [ m∑

k=0

| /∇m−k
φ|| /∇k+1

φ|+ | /∇m(Aφ2)|+ | /∇m+1
A|+ | /∇mȦ0|

]
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+ | /∇mφ̇|

[
m−1∑
k=0

| /∇m−1−k
φ|| /∇k+1

Ȧ0|+
m−1∑
k=0

| /∇m−1−k
φ̇|| /∇k+1

A0|+ | /∇m+1
φ|

+

m−1∑
k=0

| /∇m−1−k
φ|| /∇k+2

A|

]
+ | /∇mφ|| /∇m+1

φ|
[
| /∇A0|+ |Ȧ|

]
+ l.o.t.s

.
S
1/2
m+1

[
| /∇m+1

A0|+ | /∇mȦ|
] [
| /∇mφ|| /∇φ|+ |φ|| /∇m+1

φ|+ |φ|2| /∇mA|+ |φ||A|| /∇mφ|

+ | /∇m+1
A|+ | /∇mȦ0|

]
+ | /∇mφ̇|

[
| /∇mȦ0|+ | /∇m−1

φ̇|| /∇A0|+ |φ̇|| /∇mA0|

+ | /∇m+1
φ|+ | /∇m+1

A|
]

+ | /∇mφ|| /∇m+1
φ|+ l.o.t.s

.
S
1/2
m+1

[
| /∇m+1

A0|+ | /∇mȦ|
] [
| /∇mφ|+ | /∇m+1

φ|+ | /∇mA|+ | /∇m+1
A|+ | /∇mȦ0|

]
+ | /∇mφ̇|

[
| /∇mȦ0|+ | /∇m−1

φ̇|+ | /∇mA0|+ | /∇m+1
φ|+ | /∇m+1

A|
]

+ | /∇mφ|| /∇m+1
φ|

+ l.o.t.s

.
S
1/2
m+1

[
| /∇m+1

A0|+ | /∇mȦ|
] [
| /∇m+1

φ|+ | /∇m+1
A|+ | /∇mȦ0|

]
+ | /∇mφ̇|

[
| /∇mȦ0|

+ | /∇m−1
φ̇|+ | /∇mA0|+ | /∇m+1

φ|+ | /∇m+1
A|
]

+ | /∇mφ|| /∇m+1
φ|+ l.o.t.s

.
S
1/2
m+1

| /∇m+1
A0|| /∇m+1

φ|+ | /∇m+1
A0|| /∇m+1

A|+ | /∇m+1
A0|| /∇mȦ0|

+ | /∇mȦ|| /∇m+1
φ|+ | /∇mȦ|| /∇m+1

A|+ | /∇mȦ|| /∇mȦ0|+ | /∇mφ̇|| /∇mȦ0|

+ | /∇mφ̇|| /∇m−1
φ̇|+ | /∇mφ̇|| /∇mA0|+ | /∇mφ̇|| /∇m+1

φ|+ | /∇mφ̇|| /∇m+1
A|

+ | /∇mφ|| /∇m+1
φ|+ l.o.t.s,

where by .
S
1/2
m+1

we mean “bounded up to a polynomial in S
1/2
m+1”. Note also that, like in the estimate

of Section 9.3.4 where the triplets (m, k, l) sum to at least two, the lower order terms in the above are
at least quadratic in the fields so that one can control them by a full power of Sm+1. Furthermore,
inspecting the leading order terms in the above one sees that, with the exception of /∇mȦ0, they are all
easily controlled by Sm+1:

‖em+1‖L1 .
S
1/2
m+1

Sm+1 + ‖ /∇m+1
A0 /∇

m
Ȧ0‖L1 + ‖ /∇mȦ /∇mȦ0‖L1 + ‖ /∇mφ̇ /∇mȦ0‖L1

.
S
1/2
m+1

Sm+1 + ‖Ȧ0‖2Hm .

As in Proposition 9.5, standard elliptic and wave equation estimates inductively show that for small Sm,

‖Ȧ0‖2Hm .S
1/2
m

Sm+1, (10.3)

so altogether we have

‖em+1‖L1 . Sm+1P (S
1/2
m+1)

for some polynomial P .
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11 Proof of Theorem 5.2

The m = 1 case is trivial, while for m = 2 we have already proved the estimates Sm[φ,A](τ) ' Sm[φ,A](0)
and ‖Ȧ0‖2Hm−1(τ) . Sm[φ,A](τ) for small initial data. We proceed by induction. Suppose the estimates

Sm[φ,A](τ) ' Sm[φ,A](0) and ‖Ȧ0‖2Hm−1(τ) . Sm[φ,A](τ)

hold for some m ∈ N provided Sm[φ,A](0) is small enough. The second of these is immediate for m+1 by
eq. (10.3), which then implies eq. (10.2). Arguing as in the proof of Theorem 9.6 and applying Lemma 9.2
then gives eq. (10.1). �

12 Proof of Theorem 5.3

We restrict ourselves to the case of I +, the case of I − being analogous. Pick admissible initial data
u0 on Σ such that Sm[φ,A](Σ) is small enough. Then Sm[φ,A](Σ) < ε0 for some small ε0 > 0, and by
Corollary 7.2 there exists a solution (φ,Aa) in Em =

⋂m
k=0 C

k
b (I;Hm−k) to the system eq. (6.6) unique

up to trivial gauge transformations such that I contains [−π/2, π/2]. Since the solution (φ,Aa) is at least
C1 in τ for m > 2, u = (φ,A, φ̇, Ȧ, A0) has a well-defined restriction to I +. This defines the forward
wave operator

T+
m : S0

m,ε0 −→ S+
m,

u0 7−→ u+ = (φ,A, φ̇, Ȧ, A0)|I + .

By Theorem 5.2, whenever ε0 is small enough we have the estimate

Sm[φ,A](I +) 6 CSm[φ,A](Σ) 6 Cε0 =.. ε1, (12.1)

so the operator T+
m is bounded. The data u+ on I + has size at most ε1 = Cε0, so reducing ε0 if

necessary, we can evolve u+ backwards in time to find data ũ0 on Σ. But by uniqueness u0 = ũ0. Thus
the map T+

m is injective for ε0 small enough.
Now restrict the co-domain of T+

m to its image:

T+
m : S0

m,ε0 −→ T+
m(S0

m,ε0) =.. D+
m,ε1 .

By definition, T+
m is now surjective and so bijective, and from the estimate (12.1) it is clear that D+

m,ε1 ⊂
S+
m,ε1 . The operator T+

m is thus invertible and satisfies the bounds

‖T+
mu0‖2Sm . ‖u0‖2Sm and ‖(T+

m)−1u+‖2Sm . ‖u
+‖2Sm

for u0 ∈ S0
m,ε0 , u+ ∈ D+

m,ε1 . Furthermore, the set D+
m,ε1 contains a small ball around the origin in S+

m.
Indeed, if v+ ∈ S+

m has small enough norm, say ‖v+‖2Sm < δ � ε0, then ‖(T+
m)−1v+‖2Sm 6 C‖v+‖2Sm <

Cδ < ε0, and so (T+
m)−1v+ ∈ S0

m,ε0 .
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S0
m,ε0

T+
m

(T+
m)−1 S+

m,ε1

S+
m,δ

D+
m,ε1

Figure 6: The image of a small ball under the forward wave operator T+
m.

Constructing the scattering operator is now simply a matter of composing the inverse backward wave
operator and the forward wave operator. We define

Sm : D−m,ε1 −→ D+
m,ε1 ,

Sm
..= T+

m ◦ (T−m)−1.

Then Sm is invertible with inverse S −1
m = T−m ◦ (T+

m)−1, and the estimates

‖u+‖2Sm ' ‖u
−‖2Sm

for u± ∈ D±m,ε1 follow from the estimates for T±m. �

Remark 12.1. It is not immediately clear what the set D+
m,ε1 looks like, for two reasons. Firstly, the sets

S±,0m are not vector spaces since admissible initial data is not additive. Secondly, the fact that T+
m is a

nonlinear operator precludes any straightforward application of the open mapping theorem, so it is not
even obvious that D+

m,ε1 is open and connected. Nonetheless, by symmetry it is clear that the set of past
asymptotic data D−m,ε1 and the set of future asymptotic data D+

m,ε1 are of the same ‘size’ in the sense
that they are contained in balls of the same radius in S−m and S+

m respectively.

Remark 12.2. The lack of vector space structure on the domains of definition of the operators T±m and
Sm makes it difficult to discuss their regularity beyond boundedness. This lack of vector space structure
stems, most importantly, from the constraint equations in the system (6.6). It is fairly easy to see that
any extension of e.g. Sm off the constraint surface that preserves boundedness will automatically be
continuous at the zero solution, but continuity at more general solutions will require a more careful
analysis of (6.6) linearized around said solution, as well as a choice of extension. Differentiability will
pose further complications.

13 Proof of Theorem 5.4

Suppose Sm[φ̃, Ã](η = 0) is small. We derive the asymptotics for I +, the ones for I − being analogous.
By eq. (4.8), Sm[φ,A](τ = 0) is small too, and A0 estimates imply that the full Sm[φ,A](τ = 0) is small.

Then according to our estimates and Sobolev embeddings, φ, A and A0 are continuous on all of d̂S4 with
a Cm−2 trace on I +.
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Let m = 2. Then φ = Ω−1φ̃ has a continuous limit on I +, so

|φ̃| . Ω .
1

cosh(Hη)
. e−Hη

as η → +∞. The timelike component of Aa is A0 = ∂aτAa = H−1 cosh(Hη)∂aη Ãa = H−1 cosh(Hη)Ãη
and has a continuous limit on I +, so similarly

|Ãη| . e−Hη

as η → +∞. Finally the S3 components of A are

|A|2s3 = −eabAaAb = −Ω−2g̃abÃaÃb = Ω−2 H2

cosh2(Hη)
sµν3 ÃµÃν = |Ã|2s3 ,

so |Ã|s3 . 1.
Next work in the static coordinates (4.4). These coordinates are only appropriate in region I of

Figure 4 since they become singular on the horizons r = 1/H, and ∂t is spacelike in regions II and IV
and past-pointing in region III. Following the flow of the vector field ∂t in region I, one is forced to the
top right corner of Figure 5 as t → +∞. A preferred point on I + has therefore been singled out for
an observer following the flow of ∂t; this point is the timelike infinity for observers living in region I of
Figure 4.

In these coordinates the conformal factor Ω is given by

Ω =
H

cosh(Ht)

1√
Ft(r)

,

where Ft(r) = 1− tanh2(Ht)H2r2. Keeping r fixed, for the scalar field we then have

|φ̃| . Ω .r e−Ht

as t→ +∞. For the Maxwell potential we find the relations

Ãt = H2 sech2(Ht)Ft(r)
−1
(
−rF (r)1/2 sinh(Ht)Aζ +H−1F (r)1/2 cosh(Ht)Aτ

)
,

Ãr = H2 sech2(Ht)Ft(r)
−1
(
H−1F (r)−1/2 cosh(Ht)Aζ − rF (r)−1/2 sinh(Ht)Aτ

)
.

Since Aζ and Aτ have continuous limits as t→ +∞ for r fixed, we have

|Ãt| .r e−Ht and |Ãr| .r e−Ht.

Expanding the 3-sphere norm |Ã|2s3 ,

|Ã|2s3 = Ã2
ζ +

1

sin2 ζ
|Ã|2s2 . 1,

we see that |Ã|s2 . sin ζ, where one computes sin ζ = sech(Ht)HrFt(r)
−1/2. Thus

1

r
|Ã|s2 .r e−Ht

as t→ +∞.
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Now suppose m = 3. This in particular means that

| /∇φ|2 = (∂ζφ)2 +
1

sin2 ζ
|∇s2φ|2

has a continuous limit on I +, and so ∂ζφ and (sin ζ)−1|∇s2φ| do too. Since φ scales conformally as

φ = Ω−1φ̃, one computes

∂ζφ = H−1 cosh(Ht)Ft(r)
1/2
(
rF (r)−1/2 sinh(Ht)∂tφ̃

+H−1F (r)1/2 cosh(Ht)∂rφ̃
) (13.1)

and

∂τφ+ (∂τΩ)Ω−1φ = H−1 cosh(Ht)Ft(r)
1/2
(
H−1F (r)−1/2 cosh(Ht)∂tφ̃

+ rF (r)1/2 sinh(Ht)∂rφ̃
)
.

(13.2)

Since Ω∂ζφ and Ω∂τφ+ (∂τΩ)φ have continuous limits on I +, one sees that

|∂tφ̃| .r e−Ht and |∂rφ̃| .r e−Ht

as t→ +∞. For the S2 derivatives, the fact that (sin ζ)−1|∇s2φ| = Ω−1(sin ζ)−1|∇s2 φ̃| has a continuous
limit on I + implies that ∣∣∣∣1r∇s2 φ̃

∣∣∣∣ .r e−2Ht (13.3)

as t→ +∞. Let us study the e−Ht component of φ̃,

ϕ̃ ..= eHtφ̃.

Rewriting eq. (13.1) and eq. (13.2) in terms of ϕ̃, one has

O
(
e−Ht

)
= rF (r)−1/2 sinh(Ht)e−Ht(∂tϕ̃−Hϕ̃) +H−1F (r)1/2 cosh(Ht)e−Ht∂rϕ̃

and

O
(
e−Ht

)
− F (r)1/2 sinh(Ht)e−Htϕ̃ = H−1F (r)−1/2 cosh(Ht)e−Ht(∂tϕ̃−Hϕ̃)

+ rF (r)1/2 sinh(Ht)e−Ht∂rϕ̃,

which taking the limit t→ +∞ become

0 ≈ Hr∂tϕ̃−H2rϕ̃+ F∂rϕ̃,

−HFϕ̃ ≈ ∂tϕ̃−Hϕ̃+HrF∂rϕ̃,

where ≈ denotes equality at t = +∞. Solving these algebraically shows that ∂tϕ̃ ≈ 0 and

H2rϕ̃ ≈ F (r)∂rϕ̃.

The bound (13.3) shows that at t = +∞ the function ϕ̃ is independent of the S2 coordinates, so the
above equation is an ODE in r, with solution

ϕ̃(r) ≈ 1√
F (r)

ϕ̃(0).
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We conclude that there exists a constant c such that

φ̃ ∼ cF (r)−1/2e−Ht +O
(
e−2Ht

)
as t→ +∞.

as t→ +∞. One can check by hand that Φ̃1(t, r) = F (r)−1/2e−Ht is the eigenfunction of the uncharged
(Aa = 0) spherically symmetric conformally invariant wave operator

�̃+
1

6
R̃ = F (r)−1∂2

t −
1

r
∂r (rF (r)∂r) + 2H2

with eigenvalue H2. �
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A The Geometry of S3

A.1 Projection onto Divergence Free 1-Forms

Let ∗ denote the Hodge star operator on S3 and d the exterior derivative on S3. Let A be a 1-form and
f a function on S3, and write

curl A ..= ∗ dA,

div A ..= ∗ d ∗A,

grad f ..= df.

It is easy to check that the definitions of div A and grad f coincide with the notions of div and grad in
terms of the Levi–Civita connection /∇ on S3, that is div A = /∇µAµ and (grad f)µ = /∇µf . With these
definitions

curl(curl A)− grad(div A) = ∗d ∗ dA− d ∗ d ∗A = δdA + dδA =.. − /∆(1)
A,

where δ ..= (−1)3k ∗ d∗ is the codifferential acting on k-forms on S3 and the operator

− /∆(1)
: Γ(Λ1S3) −→ Γ(Λ1S3),

− /∆(1) ..= δd + dδ,

is the Hodge Laplacian on 1-forms on S3. The operator /∆
(1)

can be extended to act on arbitrary k-

forms in the obvious way (giving a number of operators /∆
(k)

, if one wishes to distinguish between their

domains), but it is important to note that if k 6= 0 the action of /∆
(k)

differs from the connection Laplacian
/∆ ..= /∇µ /∇µ in a way that depends on the degree of the forms it is acting on. The difference is given by
the Weitzenböck formula, which in the case of 1-forms is known as Bochner’s theorem (see §2.2.2 of [51]).

Theorem A.1 (Bochner’s Theorem). Let (N, g) be a Riemannian manifold with a positive definite metric
g and let ∇ be the Levi–Civita connection of g. Considered as operators Γ(Λ1N) → Γ(Λ1N), the Hodge
Laplacian ∆(1) and the connection Laplacian ∆ = ∇µ∇µ are related by

−∆(1) = ∆ +R,

where R is the scalar curvature of g.

If N= S3, we thus have

− /∆(1)
= /∆− 6.

Now suppose that A ∈ Γ(Λ1S3) satisfies the Coulomb gauge div A = 0. Then

curl(curl A) = − /∆(1)
A = ( /∆− 6)A.

Given any A ∈ Γ(Λ1S3), the elliptic equation

( /∆− 6)B = curl(curl A) (A.1)

on S3 has a unique solution B ∈ Γ(Λ1S3). This allows us to define the projection onto divergence free
1-forms P : Γ(Λ1S3)→ Γ(Λ1S3),

PA ..= ( /∆− 6)−1 curl(curl A).

By construction, for any A satisfying div A = 0, PA = A, and divPB = 0 for any B. This second
identity follows by commuting the div operator into the equation (A.1). Furthermore, for any function f

P(grad f) = ( /∆− 6)−1(curl(curl(grad f))) = ( /∆− 6)−1(0) = 0.
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A.2 Christoffel symbols and Curvature Tensors

Proposition A.2. Since S3 is maximally symmetric, the Ricci Rµν = Rµν(s3) and Riemann Rµνρσ =
Rµνρσ(s3) tensors of S3 are expressible entirely in terms of the metric s3,

Rµν = −2(s3)µν ,

and
Rµνρσ = (s3)ρν(s3)µσ − (s3)νσ(s3)µρ.

The scalar curvature of S3 is R(s3) = −6.

Proposition A.3. In the coordinates (τ, ζ, θ, φ) the non-zero Christoffel symbols of the metric e are

Γζθθ = − sin ζ cos ζ, Γζφφ = − sin2 θ sin ζ cos ζ,

Γθζθ = cot ζ = Γθθζ , Γθφφ = − sin θ cos θ,

Γφζφ = cot ζ = Γφφζ , Γφθφ = cot θ = Γφφθ.

Proposition A.4. In the coordinates (τ, ζ, θ, φ) the non-zero components of the Ricci tensor of e are

Rζζ = −2, Rθθ = −2 sin2 ζ, Rφφ = −2 sin2 ζ sin2 θ.

In fact,
Rab = −2 (0⊕ s3) ,

and the scalar curvature is thus
R = 6.

Proposition A.5. In the coordinates (τ, ζ, θ, φ) the non-zero components of the Riemann tensor of e are

Rζθζθ = − sin2 ζ = −Rζθθζ , Rζφζφ = − sin2 ζ sin2 θ = −Rζφφζ ,

Rθζζθ = 1 = −Rθζθζ , Rθφθφ = − sin2 ζ sin2 θ = −Rθφφθ,

Rφζζφ = 1 = −Rφζφζ , Rφθθφ = sin2 ζ = −Rφθφθ.

B The Sobolev Embedding Theorem

The following definitions and theorems can be found in chapter 2 of [2].

Definition B.1. Let (M, g) be a smooth Riemannian manifold of dimension n. For a real function φ
belonging to Ck(M), k > 0 an integer, we define

|∇kφ|2 ..= (∇a1∇a2 . . .∇akφ) (∇a1∇a2 . . .∇akφ) ,

and denote by Ck,p the vector space of C∞ functions φ such that |∇lφ| ∈ Lp(M) for all 0 6 l 6 k and
p > 1 a real number.

Definition B.2. The Sobolev space W k,p(M) is the completion of Ck,p with respect to the norm

‖φ‖Wk,p
..=

k∑
l=0

‖∇lφ‖p.

The space W k,p(M) does not depend on the Riemannian metric g (Theorem 2.20, [2]).
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Theorem B.3. Let M be a smooth compact Riemannian manifold of dimension n, let k, l be integers
with k > l > 0, and let p, q be real numbers with 1 6 q < p satisfying

1

p
=

1

q
− (k − l)

n
.

Then
W k,q(M) ⊂W l,p(M),

and the identity operator is continuous (the embedding is compact).
Moreover, if

(k − r − α)

n
>

1

q
,

then
W k,q(M) ⊂ Cr,α(M),

and the identity operator is continuous (the embedding is compact). Here r > 0 is an integer, α is a real
number satisfying 0 < α 6 1, Cr,α is the space of Cr functions the rth derivatives of which belong to
Cα, Cr is the space of functions φ of finite ‖φ‖Cr ..= max06l6r sup |∇lu| norm, and Cα is the space of
functions of finite ‖φ‖Cα ..= sup |φ|+ supP 6=Q{|φ(P )− φ(Q)|d(P,Q)−α} norm.

Theorem B.4. Let M be a smooth compact Riemannian manifold of dimension n and let the real
numbers p, q satisfy

1

p
=

1

q
− 1

n
> 0.

Then for every ε > 0 there exists a constant Aq(ε) such that every φ ∈W 1,q(M) satisfies

‖φ‖p 6 (K(n, q) + ε) ‖∇φ‖q +Aq(ε)‖φ‖q,

where K(n, q) is the smallest constant having this property and is given by

K(n, q) =

(
q − 1

n− q

)(
n− q
n(q − 1)

) 1
q
(

Γ(n+ 1)

Γ(n/q)Γ(n+ 1− n/q)ωn−1

) 1
n

for 1 < q < n and

K(n, 1) =
1

n

(
n

ωn−1

) 1
n

.
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Inst. Henri Poincaré, Physique théorique, 61 (1994), pp. 411–441.

[5] , The Hawking effect, Ann. Inst. Henri Poincaré, Physique théorique, 70 (1999), pp. 41–99.
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